ÌâÄ¿ÄÚÈÝ
15£®ÎªÁ˲âÁ¿Ð¡»¬¿éÓëˮƽ×ÀÃæ¼äµÄ¶¯Ä¦²ÁÒòÊý£¬Ä³Ð¡×éÉè¼ÆÁËÈçͼ¼×ËùʾµÄʵÑé×°Öã¬ÆäÖе²°å¿É¹Ì¶¨ÔÚ×ÀÃæÉÏ£¬Çᵯ»É×ó¶ËÓëµ²°åÏàÁ¬£¬Í¼ÖÐ×ÀÃæ¸ßΪh£¬O1¡¢O2¡¢A¡¢B¡¢CµãÔÚͬһˮƽֱÏßÉÏ£®ÒÑÖªÖØÁ¦¼ÓËÙ¶ÈΪg£¬¿ÕÆø×èÁ¦¿ÉºöÂÔ²»¼Æ£®ÊµÑé¹ý³ÌÒ»£ºµ²°å¹Ì¶¨ÔÚO1µã£¬Íƶ¯»¬¿éѹËõµ¯»É£¬»¬¿éÒƵ½A´¦£¬²âÁ¿O1AµÄ¾àÀ룬Èçͼ¼×Ëùʾ£®»¬¿éÓɾ²Ö¹ÊÍ·Å£¬ÂäÔÚˮƽÃæÉϵÄPµã£¬²â³öPµãµ½×ÀÃæÓҶ˵Äˮƽ¾àÀëΪx1£®
ʵÑé¹ý³Ì¶þ£º½«µ²°åµÄ¹Ì¶¨µãÒƵ½¾àO1µã¾àÀëΪdµÄO2µã£¬ÈçͼÒÒËùʾ£¬Íƶ¯»¬¿éѹËõµ¯»É£¬»¬¿éÒƵ½C´¦£¬Ê¹O2CµÄ¾àÀëÓëO1AµÄ¾àÀëÏàµÈ£®»¬¿éÓɾ²Ö¹ÊÍ·Å£¬ÂäÔÚˮƽÃæÉϵÄQµã£¬²â³öQµãµ½×ÀÃæÓҶ˵Äˮƽ¾àÀëΪx2£®
£¨1£©ÎªÍê³É±¾ÊµÑ飬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇC
A£®±ØÐë²â³öС»¬¿éµÄÖÊÁ¿ B£®±ØÐë²â³öµ¯»ÉµÄ¾¢¶ÈϵÊý C£®µ¯»ÉµÄѹËõÁ¿²»ÄÜ̫С D£®±ØÐë²â³öµ¯»ÉµÄÔ³¤
£¨2£©Ð´³ö¶¯Ä¦²ÁÒòÊýµÄ±í´ïʽ¦Ì=$\frac{{x}_{1}^{2}-{x}_{2}^{2}}{4dh}$£¨ÓÃÌâÖÐËù¸øÎïÀíÁ¿µÄ·ûºÅ±íʾ£©
£¨3£©Ð¡ºìÔÚ½øÐÐʵÑé¹ý³Ì¶þʱ£¬·¢ÏÖ»¬¿éδÄÜ»¬³ö×ÀÃ森ΪÁ˲âÁ¿Ð¡»¬¿éÓëˮƽ×ÀÃæ¼äµÄ¶¯Ä¦²ÁÒòÊý£¬»¹Ðè²âÁ¿µÄÎïÀíÁ¿ÊÇ»¬¿éÍ£Ö¹»¬¶¯µÄλÖõ½BµãµÄ¾àÀ룮
£¨4£©Ä³Í¬Ñ§ÈÏΪ£¬²»²âÁ¿×ÀÃæ¸ß¶È£¬¸ÄÓÃÃë±í²â³öС»¬¿é´Ó·ÉÀë×ÀÃæµ½ÂäµØµÄʱ¼ä£¬Ò²¿É²â³öС»¬¿éÓëˮƽ×ÀÃæ¼äµÄ¶¯Ä¦²ÁÒòÊý£®´ËʵÑé·½°¸²»¿ÉÐУ¨Ñ¡Ìî¡°¿ÉÐС±»ò¡°²»¿ÉÐС±£©£¬ÀíÓÉÊÇ»¬¿éÔÚ¿ÕÖзÉÐÐʱ¼äºÜ¶Ì£¬ÄÑÒÔ°ÑÎÕ¼ÆʱÆðµãºÍÖյ㣬Ãë±í²âʱ¼äÎó²î½Ï´ó£®
·ÖÎö ´ÓʵÑé²Ù×÷µÄ²½Öè¿ÉÖª£¬Á½ÖÖÇé¿öϵ¯»É×öµÄ¹¦ÏàµÈ£¬Îï¿é»¬³ö×ÀÃæʱµÄ¶¯ÄÜÊǵ¯»É×ö¹¦ÓëĦ²ÁÁ¦×ö¹¦µÄºÍ£»Çó³ö»¬¿é»¬¹ý²»Í¬¾àÀëϵÄĦ²ÁÁ¦×öµÄ¹¦£¬¼´¿ÉÇó³öĦ²ÁÁ¦µÄ´óСÓëĦ²ÁÒòÊýµÄ´óС
½â´ð ½â£º£¨1¡¢2£©»¬¿éÀ뿪×ÀÃæºó×öƽÅ×Ô˶¯£¬Æ½Å×Ô˶¯µÄʱ¼ä£ºt=$\sqrt{\frac{2h}{g}}$»¬¿é·ÉÐеľàÀ룺x=v•t
ËùÒÔ»¬¿éµÚ1´ÎÀ뿪×ÀÃæʱµÄËٶȣºv1=x1•$\sqrt{\frac{g}{2h}}$¢Ù
»¬¿éµÚ2´ÎÀ뿪×ÀÃæʱµÄËٶȣºv2=x2•$\sqrt{\frac{g}{2h}}$¢Ú
»¬¿éµÚ1´Î»¬¶¯µÄ¹ý³ÌÖУ¬µ¯»ÉµÄµ¯Á¦ºÍĦ²ÁÁ¦×ö¹¦£¬É赯»É×öµÄ¹¦ÊÇW1£¬ABÖ®¼äµÄ¾àÀëÊÇx£¬Ôò£ºW1-¦Ìmg•x=$\frac{1}{2}$m ${v}_{1}^{2}$¢Û
»¬¿éµÚ1´Î»¬¶¯µÄ¹ý³ÌÖУ¬W1-¦Ìmg•£¨x+d£© ¢Ü
ÁªÁ¢¢Ù¢Ú¢Û¢Ü¿ÉµÃ£º¦Ìmg•d=$\frac{1}{2}$m£¨${v}_{2}^{2}$-${v}_{1}^{2}$£©
¼´£º¦Ì=$\frac{{x}_{1}^{2}-{x}_{2}^{2}}{4dh}$
¿ÉÖª£¬Òª²â¶¨Ä¦²ÁÒòÊý£¬Ó뵯»ÉµÄ³¤¶È¡¢µ¯»ÉµÄ¾¢¶ÈϵÊý¡¢ÒÔ¼°»¬¿éµÄÖÊÁ¿¶¼Î޹أ®ÒªÏëÈû¬¿é˳Àû»³ö×ÀÃ棬µ¯»ÉµÄѹËõÁ¿²»ÄÜ̫С£®¹ÊCÕýÈ·£®
¹ÊÑ¡£ºC
£¨3£©ÔÚ½øÐÐʵÑé¹ý³Ì¶þʱ£¬·¢ÏÖ»¬¿éδÄÜ»¬³ö×ÀÃ棬Ôò¿ÉÒÔÈÏΪ»¬¿éµÄÄ©ËÙ¶ÈÊÇ0£®ÎªÁ˲âÁ¿Ð¡»¬¿éÓëˮƽ×ÀÃæ¼äµÄ¶¯Ä¦²ÁÒòÊý£¬»¹ÐèÒª²âÁ¿³ö»¬¿éÍ£Ö¹»¬¶¯µÄλÖõ½BµãµÄ¾àÀ룮
£¨4£©¸ÄÓÃÃë±í²â³öС»¬¿é´Ó·ÉÀë×ÀÃæµ½ÂäµØµÄʱ¼ä£¬À´²â¶¨Ð¡»¬¿éÓëˮƽ×ÀÃæ¼äµÄ¶¯Ä¦²ÁÒòÊý£®´ËʵÑé·½°¸ÊDz»¿ÉÐеģ¬ÔÒòÊÇ »¬¿éÔÚ¿ÕÖзÉÐÐʱ¼äºÜ¶Ì£¬ÄÑÒÔ°ÑÎÕ¼ÆʱÆðµãºÍÖյ㣬Ãë±í²âʱ¼äÎó²î½Ï´ó£®
¹Ê´ð°¸Îª£º£¨1£©C£»£¨2£©$\frac{{x}_{1}^{2}-{x}_{2}^{2}}{4dh}$£»
£¨3£©»¬¿éÍ£Ö¹»¬¶¯µÄλÖõ½BµãµÄ¾àÀ룻
£¨4£©²»¿ÉÐУ¬»¬¿éÔÚ¿ÕÖзÉÐÐʱ¼äºÜ¶Ì£¬ÄÑÒÔ°ÑÎÕ¼ÆʱÆðµãºÍÖյ㣬Ãë±í²âʱ¼äÎó²î½Ï´ó
µãÆÀ ±¾Ì⿼²éÁË̽¾¿Ó°ÏìĦ²ÁÁ¦´óСµÄÒòËؼ°¶¯Ä¦²ÁÒòÊýµÄ²â¶¨£¬ÒâÔÚ¿¼²é¿¼Éú¶ÔʵÑéÔÀí¡¢²Ù×÷²½ÖèºÍÊý¾Ý´¦Àí·½·¨µÄÕÆÎÕÇé¿ö£¬Ó¦ÓÃËùѧ»ù±¾¹æÂɽâ¾öʵÑéÎÊÌâµÄÄÜÁ¦£®
A£® | Öʵã4sÄ©µÄËÙ¶ÈΪ10m/s | B£® | Öʵã2sÄ©µÄËÙ¶ÈΪ6m/s | ||
C£® | Öʵã4sÄÚµÄƽ¾ùËÙ¶ÈΪ5m/s | D£® | ÖʵãµÄ¼ÓËÙ¶ÈΪ3m/s2 |
A£® | 1.5m/s | B£® | 3m/s | C£® | 3.5m/s | D£® | 4m/s |
A£® | ${\;}_{6}^{14}$C¡ú${\;}_{4}^{10}$Be+${\;}_{2}^{4}$He | B£® | ${\;}_{6}^{14}$C¡ú${\;}_{5}^{14}$B+${\;}_{1}^{0}$e | ||
C£® | ${\;}_{6}^{14}$C¡ú${\;}_{7}^{14}$N+${\;}_{-1}^{0}$e | D£® | ${\;}_{6}^{14}$C¡ú${\;}_{5}^{12}$B+${\;}_{1}^{2}$H |
A£® | B=$\frac{R£¨{U}_{1}-{U}_{2}£©}{K£¨{E}_{1}-{E}_{2}£©L}$ | B£® | B=$\frac{R£¨{U}_{1}-{U}_{2}£©}{K£¨{E}_{1}+{E}_{2}£©L}$ | ||
C£® | B=$\frac{R£¨\sqrt{{U}_{1}}-\sqrt{{U}_{2}}£©}{\sqrt{K}£¨{E}_{1}-{E}_{2}£©L}$ | D£® | B=$\frac{R£¨\sqrt{{U}_{1}}-\sqrt{{U}_{2}}£©}{\sqrt{K}£¨{E}_{1}+{E}_{2}£©L}$ |
A£® | AµãµÄµçÊÆΪ4V | |
B£® | µçºÉÔÚBµãµÄµçÊÆÄÜΪ4¡Á10-6J | |
C£® | µçºÉ´ÓDÒƵ½B¿Ë·þµç³¡Á¦×ö¹¦4¡Á10-6J | |
D£® | C¡¢Aµã¼äµçÊƲîUCAΪ5V |
A£® | Éþ¶ÔBµÄÀÁ¦´óСµÈÓÚAµÄÖØÁ¦´óС | B£® | B¶ÔµØÃæµÄѹÁ¦Ò»¶¨²»ÎªÁã | ||
C£® | BÊܵ½µØÃæµÄĦ²ÁÁ¦¿ÉÄÜΪÁã | D£® | AµÄÖØÁ¦Ò»¶¨Ð¡ÓÚBµÄÖØÁ¦ |