题目内容
【题目】如图所示,一根长0.1 m的细线,一端系着一个质量为0.18 kg的小球,拉住线的另一端,使小球在光滑的水平桌面上做匀速圆周运动.当小球的转速改为原来的3倍时,细线将恰好会断开,线断开前的瞬间,小球受到的拉力比原来的拉力大40 N,
求:(1)线断开前的瞬间,线受到的拉力大小?
(2)线断开的瞬间,小球运动的线速度?
(3)如果小球离开桌面时,速度方向与桌边缘的夹角为60°,桌面高出地面0.8 m,求小球飞出后的落地点距离桌边缘的水平距离?(取g=10 m/s2)
【答案】(1)45 N(2)5 m/s(3)1.73 m
【解析】
(1)线的拉力提供小球做圆周运动的向心力,设开始时角速度为ω0,向心力为F0,线断开的瞬间,角速度为ω,线的拉力为FT,
FT=mω2R
解得;
又因为FT=F0+40 N ;
解得FT=45 N.
(2)设线断开时小球的线速度为v,由FT= 得v==5 m/s
(3)设桌面高度为h,小球落地经历时间为t,落地点与飞出桌面点的水平距离为x.
由h=gt2得t==0.4 s;
水平位移x=vt=2 m
则小球飞出后的落地点到桌边缘的水平距离为l=xsin 60°=m=1.73 m.
练习册系列答案
相关题目