题目内容

某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在平直轨道上运动到C点,并越过壕沟.已知赛车质量m=0.1kg,通电后以额定功率P=1.4W工作,水平轨道的摩擦阻力恒为0.20N.图中L=10.0m,BC=1.5m,R=0.32m,h=1.25m,S=1.5m.重力加速度g取10m/s2.求:
(1)赛车要越过壕沟,离开C点的速度至少多大?
(2)赛车要通过光滑竖直轨道,刚进入B点时的最小速度多大?赛车的电动机在AB段至少工作多长时间?
(3)要使赛车完成比赛,赛车离开光滑竖直轨道后,电动机在BC段是否还要继续工作?(要通过计算回答)
分析:(1)本题中赛车的运动可以分为三个过程,由A至B的过程、在圆轨道上的过程、平抛运动的过程;要能越过壕沟,水平位移最小等于s,由平抛运动的规律求出赛车离开C点的速度;
(2)赛车恰好通过光滑竖直轨道时,在最高点恰好由重力提供向心力,由牛顿第二定律求出通过最高点时最小的速度,根据机械能守恒求出进入B点时的最小速度.根据动能定理求出赛车的电动机在AB段至少工作的时间;
(3)根据动能定理求出赛车到达C点的速度,与第1题进行比较,确定电动机是否需要继续工作.
解答:解:(1)设赛车越过壕沟需要的最小速度为v1,由平抛运动的规律
     s=v1t
     h=
1
2
gt2
解得
v1=s
g
2h
=3m/s
(2)设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v2,最低点的速度为v3,由牛顿第二定律及机械能守恒定律
在最高点:mg=m
v
2
2
R

从最低点到最高点的过程,
1
2
m
v
2
3
=
1
2
m
v
2
2
+mg(2R)
  解得 v3=
2gR
=4m/s
设电动机工作时间至少为t,根据功能原理
  pt-fL=
1
2
m
v
2
3

由此可得 t=2s
即要使赛车完成比赛,电动机至少工作2s的时间.
(3)赛车离开光滑竖直轨道后,假设电动机不工作,赛车到达C点的速度大小为V,根据动能定理得:
-f?BC=
1
2
mV2
-
1
2
m
v
2
3

解得V=
22
>v1=3m/s
所以电动机在BC段不需要继续工作.
答:
(1)赛车要越过壕沟,离开C点的速度至少3m/s.
(2)赛车要通过光滑竖直轨道,刚进入B点时的最小速度是4m/s.赛车的电动机在AB段至少工作2s时间.
(3)要使赛车完成比赛,赛车离开光滑竖直轨道后,电动机在BC段不要继续工作.
点评:本题是力电综合问题,关键要将物体的运动分为三个过程,分析清楚各个过程的运动特点和受力特点,然后根据动能定理、平抛运动公式、向心力公式列式求解!
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网