题目内容
【题目】(多选)如图所示,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各有一挡板固定在地上,B不能左右运动,在环的最低点静止放有一小球C,A、B、C的质量均为m.现给小球一水平向右的瞬时速度v,小球会在环内侧做圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起(不计小球与环的摩擦阻力),则瞬时速度v必须满足( )
A.最小值 B.最小值
C.最大值 D.最大值
【答案】BD
【解析】
试题分析:选BD.要保证小球能通过环的最高点,在最高点最小速度满足mg=m,由最低点到最高点由机械能守恒得mv=mg·2r+mv,可得小球在最低点瞬时速度的最小值为,故选项A错误,B正确;为了不会使环在竖直方向上跳起,在最高点有最大速度时,球对环的压力为2mg,满足3mg=m,从最低点到最高点由机械能守恒得:mv=mg·2r+mv,可得小球在最低点瞬时速度的最大值为,故选项C错误,D正确.
练习册系列答案
相关题目