题目内容
20. (1)如图1,在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各联结一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度v0,求弹簧第一次恢复到自然长度时,每个小球的速度.(2)如图2,将N个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E0,其余各振子间都有一定的距离.现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度.
20.(1)设每个小球质量为m,以u1、u2分别表示弹簧恢复到自然长度时左右两端小球的速度.由动量守恒和能量守恒定律有
mu1+mu2=mu0 (以向右为速度正方向)
解得 u1=u0,u2=0或u1=0,u2=u0
由于振子从初始状态到弹簧恢复到自然长度的过程中,弹簧一直是压缩状态,弹性力使左端小球持续减速,使右端小球持续加速,因此应该取解:u1=0,u2=u0.
(2)以v1、分别表示振子1解除锁定后弹簧恢复到自然长度时左右两小球的速度.规定向右为速度的正方向,由动量守恒和能量守恒定律,
解得,或, .
在这一过程中,弹簧一直是压缩状态,弹性力使左端小球向左加速,右端小球向右加速,故应取解:
,
振子1与振子2碰撞后,由于交换速度,振子1右端小球速度变为0,左端小球速度仍为v1,此后两小球都向左运动.当它们向左的速度相同时,弹簧被拉伸至最长,弹性势能最大.设此速度为v10,根据动量守恒定律,2mv10=mv1
用E1表示最大弹性势能,由能量守恒有
解得 E1=E0
振子2被碰撞后瞬间,左端小球速度为,右端小球速度为0.以后弹簧被压缩,当弹簧再恢复到自然长度时,根据(1)题结果,左端小球速度v2=0,右端小球速度=,与振子3碰撞,由于交换速度,振子2右端小球速度变为0,振子2静止,弹簧为自然长度,弹性势能为E2=0.
同样分析可得 E2=E3=……EN-1=0
振子N被碰撞后瞬间,左端小球速度=,右端小球速度为0,弹簧处于自然长度,此后两小球都向右运动,弹簧被压缩,当它们向右的速度相同时,弹簧被压缩至最短,弹性势能最大,设此速度为vN0,根据动量守恒定律,
2mvN0=m
用EN表示最大弹性势能,根据能量守恒,有
解得 EN=E0