题目内容

两颗行星A和B各有一颗卫星a和b,卫星轨道接近各自的行星表面,如果两行星质量之比为MA/MB=p,两行星半径之比RA/RB=q,则两卫星周期之比Ta/Tb为(  )
分析:卫星做圆周运动,万有引力提供向心力,求出周期和中心天体质量M以及运行半径R之间的关系可得.
解答:解:卫星做圆周运动时,万有引力提供圆周运动的向心力,则有:G
mM
R2
=mR(
T
)2
得:T=
4π2R3
GM

∴两卫星运行周期之比
Ta
Tb
=
4π2Ra3
GMa
4π2Rb3
GMb
=
Ra3
Rb3
×
Mb
Ma
=
q3
×
1
p
=q
q
p

故选D.
点评:根据万有引力提供向心力列出方程,得到周期之比和半径以及质量之间的关系,代入数据可得结论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网