题目内容
【题目】如图所示,在等腰直角三角形abc区域内存在垂直纸面向外、磁感应强度为B的匀强磁场,O为ab边的中点,在O处有一粒子源沿纸面内不同方向、以相同的速率不断向磁场中释放相同的带正电的粒子,已知粒子的质量为m,电荷量为q,直角边ab长为,不计重力和粒子间的相互作用力。则
A. 粒子能从bc边射出的区域长度为
B. 粒子在磁场中运动的最长时间为
C. 若粒子从bc边射出,则入射方向与Ob的夹角一定小于
D. 从ac边射出的粒子中,沿Oa方向射入磁场的粒子在磁场中运动的时间最短
【答案】AB
【解析】
粒子在磁场中做圆周运动,洛伦兹力提供向心力,作出粒子运动轨迹,求出粒子轨道半径与粒子转过的圆心角,然根据粒子做圆周运动的周期公式求出粒子的运动时间。
ABC.粒子运动轨迹如图所示:
粒子在bc边可以从b点射出,最高点在P点。根据可得粒子做圆周运动的半径, ab边长为,根据几何知识可得,粒子恰好与ac边相切时,恰好从P点射出,,P为bc中点,,粒子运动的最长时间,且粒子与Ob方向的夹角可以大于,故AB正确,C错误;
D.若粒子从ac边射出,则粒子在磁场中运动的时间最短时,弧长所对应的弦长最短,如上图,粒子从aQ的中点E射出时弦最短为L,故D错误。
所以AB正确,CD错误。
练习册系列答案
相关题目