题目内容

如图所示,A、B、C是在地球大气层外圆形轨道上运动的3颗卫星,已知mA=mB>mC,下列说法正确的是(  )
分析:根据人造卫星的万有引力等于向心力,列式求出线速度、角速度、周期和向心力的表达式进行讨论即可.
解答:解:A、人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有
F=F
F=G
Mm
r2

F=m
v2
r
=mω2r=m(
T
2r
因而
G
Mm
r2
=m
v2
r
=mω2r=m(
T
2r=ma
解得
v=
GM
r

T=
2πr
v
=2π
r3
GM

a=
GM
r2

根据题意
ra<rb=rc
由①④式可知,vA>vB=vC,故A正确;
B、由①④式可知,TA<TB=TC,故B正确;
D、由③④式可知,aA>aB>aC,故D错误;
C、万有引力提供向心力,根据万有引力公式F=G
Mm
r2
和已知条件mA=mB>mC,可以判断:FA>FB,FB>FC,故FA>FB>FC故C错误;
故选AB.
点评:本题关键抓住万有引力提供向心力,先列式求解出线速度、角速度、周期和加速度的表达式,再进行讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网