题目内容

【题目】如图所示,半径R=0.8m的四分之一光滑圆弧轨道位于竖直平面内,与光滑绝缘水平面平滑连接。D点在水平面的最右端,N点在D点的正下方水平地面上。水平面右侧空间存在互相垂直的匀强电场和匀强磁场,电场方向竖直向上,磁场的磁感应强度B=1.0T,方向垂直纸面向外。两个质量均为m=2.0×10-6kg的小球ab,a球绝缘不带电,b球带q=1.0×10-5C的正电,并静止于水平面右边缘处口将a球从圆弧轨道顶端由静止释放,运动到,D点与b球发生弹性正碰。碰撞时间极短。b碰后b球水平飞入复合场,并做匀速圆周运动后落在地面上的P点。己知D处距地面的C高度h=1.2ma、b均可视为质点。(重力加速度g=10m/s2)求:

(1)b球碰撞后瞬间速度的大小;

(2)电场强度的大小;

(3)b球落点PN点之间的距离。

【答案】14m/s 22N/C 30.69m

【解析】

1)设a球到D点时的速度为va,根据动能定理

解得:=4m/s

a、b球组成的系统,根据动量守恒定律及机械能守恒定律可得

解得:=4m/s

2)由b球在复合场中做匀速圆周运动,可得

解得E=2N/C

3)由洛仑兹力提供向心力,得

解得:r=0.8m

由几何关系可知

(h-r)2+SNP2=r2

解得:SNP=m=0.69m

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网