题目内容
【题目】m1和m2两物体与斜面之间的滑动摩擦因数相同,已知m1>m2 , 它们先后从同一斜面的顶端由静止开始自由下滑,则它们到达底端的速度( )
A.v1>v2
B.v1=v2
C.v1<v2
D.不确定
【答案】B
【解析】解:设斜面的长度为L,斜面的倾角为θ,任一物体质量为m,加速度为a,根据牛顿第二定律得:
mgsinθ﹣f=ma
N﹣mgcosθ=0,
又f=μN
联立三式解得 a=gsinθ﹣μgcosθ
物体沿斜面做匀加速运动,由v2=2aL得:
物体到达底端的速度 v= = ,与物体的质量无关,则有v1=v2.
故选:B
【考点精析】本题主要考查了自由落体运动的相关知识点,需要掌握(1)条件:初速度为零,只受重力作用;(2)性质:是一种初速为零的匀加速直线运动,a=g才能正确解答此题.
练习册系列答案
相关题目