题目内容

粒子回旋加速器的工作原理如图所示,置于真空中的D形金属盒的半径为R,两金属盒问的狭缝很小,磁感应强度为日的匀强磁场与金属盒盒面垂直,高频交流电的频率为厂,加速电压为U,若中心粒子源处产生的质子质量为m,电荷量为+e,在加速器中被加速.不考虑相对论效应,则下列说法正确是(  )
分析:回旋加速器运用电场加速磁场偏转来加速粒子,根据洛伦兹力提供向心力可以求出粒子的最大速度,从而求出最大动能.在加速粒子的过程中,电场的变化周期与粒子在磁场中运动的周期相等.
解答:解:A、带电粒子在磁场中运动的周期与加速电场的周期相等,根据T=
2πm
qB
知,换用α粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速α粒子.故A错误.
B、根据qvB=m
v2
R
,知v=
BRq
m
,则最大动能EKm=
1
2
mv2=
q2B2R2
2m
.与加速的电压无关.故B错误.
C、质子出回旋加速器的速度最大,此时的半径为R,则v=
2πR
T
=2πRf.所以最大速度不超过2πfR.故C正确.
D、粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据v=
2ax
知,质子第二次和第一次经过D形盒狭缝的速度比为
2
:1,
根据r=
mv
qB
,则半径比为
2
:1.故D正确.
故选CD.
点评:解决本题的关键知道回旋加速器电场和磁场的作用,知道最大动能与什么因素有关,以及知道粒子在磁场中运动的周期与电场的变化的周期相等.
练习册系列答案
相关题目
(2012?昌平区二模)1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图(甲)所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,初速度为0,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t和粒子获得的最大动能Ekm

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合.例如由直线加速器做为预加速器,获得中间能量,再注入回旋加速器获得最终能量.n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意).各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端.整个装置放在高真空容器中.圆筒的两底面中心开有小孔.现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场).缝隙的宽度很小,离子穿过缝隙的时间可以不计.已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差U1-U2=-U.为使打到靶上的离子获得最大能量,各个圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网