题目内容

19.如图所示,是美国的“卡西尼”号探测器经过长达7年的“艰苦”旅行,进入绕土星飞行的轨道.若“卡西尼”号探测器在半径为R的土星上空离土星表面高h的圆形轨道上绕土星飞行,环绕n周飞行时间为t,已知引力常量为G,则下列关于土星质量M和平均密度ρ的表达式正确的是(  )
A.M=$\frac{4{π}^{2}(R+h)^{3}}{G{t}^{2}}$,ρ=$\frac{3π(R+h)^{3}}{G{t}^{2}{R}^{3}}$
B.M=$\frac{4{π}^{2}{n}^{2}(R+h)^{2}}{G{t}^{2}}$,ρ=$\frac{3π{n}^{2}(R+h)^{2}}{G{t}^{2}{R}^{3}}$
C.M=$\frac{4{π}^{2}{t}^{2}(R+h)^{3}}{G{n}^{2}}$,ρ=$\frac{3π{t}^{2}(R+h)^{3}}{G{n}^{2}{R}^{3}}$
D.M=$\frac{4{π}^{2}{n}^{2}(R+h)^{3}}{G{t}^{2}}$,ρ=$\frac{3π{n}^{2}(R+h)^{3}}{G{t}^{2}{R}^{3}}$

分析 探测器绕土星飞行,环绕n周飞行时间为t,求出探测器运行的周期.由土星的万有引力提供探测器的向心力列方程求出土星的质量,由密度公式求出土星的平均密度.

解答 解:探测器绕土星飞行,环绕n周飞行时间为t,则探测器运行的周期为 T=$\frac{t}{n}$
由万有引力提供向心力得 G$\frac{Mm}{(R+h)^{2}}$=m$\frac{4{π}^{2}}{{T}^{2}}(R+h)$
得:M=$\frac{4{π}^{2}{n}^{2}(R+h)^{3}}{G{t}^{2}}$
由 ρ=$\frac{M}{V}$,V=$\frac{4}{3}π{R}^{3}$ 得:ρ=$\frac{3π{n}^{2}(R+h)^{3}}{G{t}^{2}{R}^{3}}$.故D正确、ABC错误.
故选:D

点评 本题题目看似很长,要耐心读题,抓住要点,建立物理模型:探测器绕土星做匀速圆周运动,土星的万有引力提供向心力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网