ÌâÄ¿ÄÚÈÝ
18£®ÈçͼËùʾ£¬ÓÐÒ»¹â»¬¹ìµÀABC£¬ABΪÊúֱƽÃæÄڰ뾶ΪRµÄËÄ·ÖÖ®Ò»Ô²»¡¹ìµÀ£¬BC²¿·ÖΪ×ã¹»³¤µÄˮƽ¹ìµÀ£®Ò»¸öÖÊÁ¿Îªm1µÄСÎïÌå×ÔA´¦Óɾ²Ö¹ÊͷźóÑØÔ²»¡¹ìµÀAB»¬Ï£¬ÓëÔÚˮƽ¹ìµÀBCÉÏÖÊÁ¿Îªm2µÄ¾²Ö¹ÎïÌåÏàÅö£®£¨1£©Èç¹ûm2ÓëˮƽÇᵯ»ÉÏàÁ¬£¬µ¯»ÉµÄÁíÒ»¶ËÁ¬Ôڹ̶¨×°ÖÃPÉÏ£®m1»¬µ½Ë®Æ½¹ìµÀºóÓëm2·¢ÉúÅöײµ«²»Õ³Á¬£¬Åöײºóm1Óëm2-Æ𽫵¯»ÉѹËõºó±»µ¯»Ø£¬m1Óëm2ÖØзֿª£®Èôµ¯»ÉѹËõºÍÉ쳤¹ý³ÌÖÐÎÞ»úеÄÜËðʧ£¬ÇÒm1=m2£¬Çóm1·´µ¯ºóÄÜ´ïµ½µÄ×î´ó¸ß¶È£»
£¨2£©Èç¹ûÈ¥µôÓëm2ÏàÁ¬µÄµ¯»É¼°¹Ì¶¨×°ÖÃP£¬m1ÈÔ´ÓA´¦Óɾ²Ö¹ÊÍ·Å£®Èôm1=$\frac{1}{2}$m2£¬m1Óëm2µÄÅöײ¹ý³ÌÖÐÎÞ»úеÄÜËðʧ£¬ÇóÅöײºóm1ÄÜ´ïµ½µÄ×î´ó¸ß¶È£»
£¨3£©ÔÚÂú×ãµÚ£¨2£©ÎʵÄÌõ¼þÏ£¬Èôm1Óëm2µÄÅöײ¹ý³ÌÖÐÎÞ»úеÄÜËðʧ£¬ÒªÊ¹m1Óëm2Ö»ÄÜ·¢ ÉúÒ»´ÎÅöײ£¬Çóm2Óëm1µÄ±ÈÖµ·¶Î§£®
·ÖÎö £¨1£©£¨2£©m1´ÓA»¬µ½B»úеÄÜÊغ㣬ºÍm2·¢ÉúÅöײʱ¶¯Á¿Êغ㣬¾Ý´Ë¿ÉÇó³öÅöײʱµÄ¹²Í¬Ëٶȣ¬µ±µ¯»É»Ö¸´µ½×ÔÈ»³¤¶Èʱm1Óëm2ÖØзֿª£¬´Ëʱm1Óëm2µÄËÙ¶ÈÓë´Ë¹²Í¬ËÙ¶ÈÏàµÈ£¬È»ºó¸ù¾Ý»úеÄÜÊغ㼴¿ÉÇó³öm1ÄÜ´ïµ½µÄ×î´ó¸ß¶È£®
£¨3£©a£®m1Óëm2·¢ÉúÅöײʱ¶¯Á¿Êغãͬʱ»úеÄÜÊغ㣬¾Ý´ËÇó³öm1ÅöºóËٶȣ¬È»ºó¸ù¾Ý»úеÄÜÊغ㼴¿ÉÇó³öm1ÄÜ´ïµ½µÄ×î´ó¸ß¶È£®
b£®¸ù¾Ým1Óëm2·¢ÉúÅöײʱ¶¯Á¿Êغ㡢»úеÄÜÊغãÇó³öËûÃǵÄÅöºóËٶȣ¬×¢ÒâµÚÒ»´ÎÅöºóm1µÄËٶȴóÓÚm2µÄËٶȣ¬µÚ¶þ´Îm1µÄËÙ¶ÈСÓÚm2µÄËٶȣ¬¾Ý´Ë¿ÉÕýÈ·½â´ð£®
½â´ð ½â£º£¨1£©m1´ÓA»¬µ½BÖØÁ¦ÊÆÄÜת»¯Îª¶¯ÄÜ£¬m1µÄËٶȴﵽv1
${m}_{1}gR=\frac{1}{2}{m}_{1}{v}_{1}^{2}$ ¢Ù
m1Óëm2·¢ÉúÅöײʱµ¯»É´¦ÓÚ×ÔȻ״̬£¬ÏµÍ³¶¯Á¿Êغ㣬ÅöײºóÒÔ¹²Í¬ËÙ¶Èv¹²ÏòÓÒÔ˶¯£®
m1v1+m2v2=£¨m1+m2£©v¹² ¢Ú
ÁªÁ¢¢Ù¢Ú½âµÃ£º${v}_{¹²}=\frac{{v}_{1}}{2}=\frac{\sqrt{2gR}}{2}$
m1Óëm2Ò»Æ𽫵¯»ÉѹËõºóÓÖ±»µ¯»Ø£¬µ±µ¯»É»Ö¸´µ½×ÔÈ»³¤¶Èʱm1Óëm2ÖØзֿª£¬´Ëʱm1Óëm2µÄËٶȶ¼Îªv¹²£¬m1ÒÔv¹²Îª³õËٶȻ¬ÉÏÔ²»¡¹ìµÀ£¬Éèm1ÄÜ´ïµ½µÄ×î´ó¸ß¶ÈÊÇh
$\frac{1}{2}{m}_{1}{v}_{¹²}^{2}={m}_{1}gh$
½âµÃ $h=\frac{1}{4}R$
¹Êm1·´µ¯ºóÄÜ´ïµ½µÄ×î´ó¸ß¶ÈΪ£º$h=\frac{1}{4}R$£®
£¨2£©³·È¥µ¯»É¼°¹Ì¶¨×°Öúó£®
a£®m1Óëm2·¢ÉúÅöײʱϵͳ¶¯Á¿Êغ㣬ÇÒûÓлúеÄÜËðʧ£®ÉèÏòÓÒΪÕý·½Ïò£¬ÓÐ
${m}_{1}{v}_{1}={m}_{1}{v}_{1}^{¡ä}+{m}_{2}{v}_{2}^{¡ä}$ ¢Û
$\frac{1}{2}{m}_{1}{v}_{1}^{2}=\frac{1}{2}{m}_{1}£¨{v}_{1}^{¡ä}£©^{2}$$+\frac{1}{2}{m}_{2}£¨{v}_{2}^{¡ä}£©^{2}$ ¢Ü
´úÈë${m}_{1}=\frac{1}{2}{m}_{2}$£¬ÁªÏµ¢Û¢Ü¿ÉµÃ£º${v}_{1}^{¡ä}=-\frac{1}{3}\sqrt{2gR}$£¬¸ººÅ±íʾm1Ïò×óÔ˶¯
´Ëºóm1³åÉÏÔ²»¡¹ìµÀ£¬Éèm1ÄÜ´ïµ½µÄ×î´ó¸ß¶ÈÊÇh¡ä£¬ÓУº
$\frac{1}{2}{m}_{1}£¨{v}_{1}^{¡ä}£©^{2}=mg{h}^{¡ä}$
½«${v}_{1}^{¡ä}$´øÈëÉÏʽ£¬¿ÉµÃ£º${h}^{¡ä}=\frac{1}{9}R$
¹ÊÅöײºóm1ÄÜ´ïµ½µÄ×î´ó¸ß¶ÈΪ£º${h}^{¡ä}=\frac{1}{9}R$£®
b£®m1»¬µ½Ë®Æ½¹ìµÀÒÔËÙ¶Èv1Óë¾²Ö¹µÄm2·¢ÉúµÚÒ»´ÎÅöײ£¬ÉèÏòÓÒΪÕý·½Ïò£¬ÓÐ
${m}_{1}{v}_{1}={m}_{1}{v}_{1}^{¡ä}+{m}_{2}{v}_{2}^{¡ä}$
$\frac{1}{2}{m}_{1}{v}_{1}^{2}=\frac{1}{2}{m}_{1}£¨{v}_{1}^{¡ä}£©^{2}$$+\frac{1}{2}{m}_{2}£¨{v}_{2}^{¡ä}£©^{2}$
½âµÃ£º${v}_{1}^{¡ä}=\frac{£¨{m}_{1}-{m}_{2}£©{v}_{1}}{{m}_{1}+{m}_{2}}$£¬${v}_{2}^{¡ä}=\frac{2{m}_{1}{v}_{1}}{{m}_{1}+{m}_{2}}$
ÒªÄÜ·¢ÉúµÚ¶þ´ÎÅöײµÄÌõ¼þÊÇ${v}_{1}^{¡ä}£¼0$£¬¼´m1£¼m2£»ÇÒ|${v}_{1}^{¡ä}$|£¾${v}_{2}^{¡ä}$£¬¼´|m1-m2|£¾2m1£¬¿ÉµÃ
m2£¾3m1 ¢Ý
m1´ÓÔ²»¡¹ìµÀÉÏ»¬Ï£¬ÒÔ´óСΪ|${v}_{1}^{¡ä}$|=$\frac{{m}_{2}-{m}_{1}}{{m}_{1}+{m}_{2}}{v}_{1}$µÄËÙ¶ÈÓëËÙ¶ÈΪ${v}_{2}^{¡ä}=\frac{2{m}_{1}{v}_{1}}{{m}_{1}+{m}_{2}}$µÄm2·¢ÉúµÚ¶þ´ÎÅöײ£¬ÓУº
${m}_{1}|{v}_{1}^{¡ä}|+{m}_{2}{v}_{2}^{¡ä}={m}_{1}{v}_{1}^{¡å}$$+{m}_{2}{v}_{2}^{¡å}$
$\frac{1}{2}{m}_{1}£¨{v}_{1}^{¡ä}£©^{2}+\frac{1}{2}{m}_{2}£¨{v}_{2}^{¡ä}£©^{2}$=$\frac{1}{2}{m}_{1}£¨{v}_{1}^{¡å}£©^{2}+\frac{1}{2}{m}_{2}£¨{v}_{2}^{¡å}£©^{2}$
µÚ¶þ´ÎÅöºóm1ºÍ m2µÄËÙ¶È
${v}_{1}^{¡å}=\frac{4{m}_{1}{m}_{2}-{£¨m}_{2}-{m}_{1}£©^{2}}{£¨{m}_{1}+{m}_{2}£©^{2}}{v}_{1}$ ¢Þ
${v}_{2}^{¡å}=\frac{4{m}_{1}£¨{m}_{2}-{m}_{1}£©}{£¨{m}_{1}+{m}_{2}£©^{2}}{v}_{1}$ ¢ß
²»·¢ÉúµÚÈý´ÎÅöײµÄÌõ¼þΪ£º|${v}_{1}^{¡å}$|¡Ü${v}_{2}^{¡å}$
Ôò£º-4m1£¨m2-m1£©¡Ü$4{m}_{1}{m}_{2}-£¨{m}_{2}-{m}_{1}£©^{2}$¡Ü4m1£¨m2-m1£©
½â²»µÈʽ$-4{m}_{1}£¨{m}_{2}-{m}_{1}£©¡Ü4{m}_{1}{m}_{2}-{£¨m}_{2}-{m}_{1}£©^{2}$
µÃ£º$£¨5-2\sqrt{5}£©{m}_{1}¡Ü{m}_{2}¡Ü£¨5+2\sqrt{5}£©{m}_{1}$ ¢à
½â²»µÈʽ£º$4{m}_{1}{m}_{2}-£¨{m}_{2}-{m}_{1}£©^{2}¡Ü4{m}_{1}£¨{m}_{2}-{m}_{1}£©$
µÃ m2¡Ý3m1 »òm2¡Ü-m1 ¢á£¨9£©
×ۺϢݡ¢¢à¡¢¢á£¬m1Óëm2Ö»ÄÜ·¢ÉúÁ½´ÎÅöײµÄÌõ¼þΪ£º$3£¼\frac{{m}_{2}}{{m}_{1}}¡Ü5+2\sqrt{5}$
¹ÊҪʹm1Óëm2Ö»ÄÜ·¢ÉúÁ½´ÎÅöײ£¬m2Óë m1µÄ±ÈÖµ·¶Î§Îª£º$3£¼\frac{{m}_{2}}{{m}_{1}}¡Ü5+2\sqrt{5}$£®
´ð£º£¨1£©m1·´µ¯ºóÄÜ´ïµ½µÄ×î´ó¸ß¶ÈÊÇ$\frac{1}{4}R$£»£¨2£©Åöײºóm1ÄÜ´ïµ½µÄ×î´ó¸ß¶ÈÊÇ$\frac{1}{9}R$£»£¨3£©m2Óëm1µÄ±ÈÖµ·¶Î§ÊÇ$3£¼\frac{{m}_{2}}{{m}_{1}}¡Ü5+2\sqrt{5}$£®
µãÆÀ ±¾Ì⿼²éÁ˶¯Á¿ºÍÄÜÁ¿ÎÊÌ⣬ÓÐÒ»¶¨µÄÄѶȣ¬ÄѵãÔÚÓÚÊýѧÔËË㣬Òò´ËƽʱѵÁ·ÖÐҪעÒâÊýѧ֪ʶÔÚÎïÀíÖеÄÓ¦Óã®
A£® | $\frac{3{¦Ø}^{2}}{4¦ÐG}$ | B£® | $\frac{2{¦Ø}^{2}}{3¦ÐG}$ | C£® | $\frac{{¦Ø}^{2}}{2¦ÐG}$ | D£® | $\frac{{¦Ø}^{2}}{4¦ÐG}$ |
A£® | I2=$\frac{U}{r}$ | B£® | P1£¼$\frac{{U}^{2}}{R}$ | C£® | P2=UI2 | D£® | P4=I${\;}_{2}^{2}$r |
£¨1£©ÊµÑéʱʹС³µÔÚíÀÂëºÍÍÐÅ̵ÄÇ£ÒýÏÂÔ˶¯£¬¶¨Á¿Ì½¾¿£ºÔÚÍâÁ¦Ò»¶¨µÄÌõ¼þÏ£¬¼ÓËÙ¶ÈÓëÖÊÁ¿µÄ¹Øϵ£®
¢ÙʵÑé×¼±¸ÁË´òµã¼ÆʱÆ÷¼°ÅäÌ׵ĵçÔ´¡¢µ¼Ïß¡¢¸´Ð´Ö½¼°Èçͼ1ËùʾµÄÆ÷²Ä£®ÈôÒªÍê³É¸ÃʵÑ飬±ØÐèµÄʵÑéÆ÷²Ä»¹ÓÐÌìƽ¡¢¿Ì¶È³ß£®
¢ÚʵÑ鿪ʼʱ£¬Ïȵ÷½Úľ°åÉ϶¨»¬Âֵĸ߶ȣ¬Ê¹Ç£ÒýС³µµÄϸÉþÓëľ°åƽÐУ®ÕâÑù×öµÄÄ¿µÄÊÇD£¨Ìî×Öĸ´úºÅ£©
A¡¢±ÜÃâС³µÔÚÔ˶¯¹ý³ÌÖз¢Éú¶¶¶¯
B¡¢¿Éʹ´òµã¼ÆʱÆ÷ÔÚÖ½´øÉÏ´ò³öµÄµã¼£ÇåÎú
C¡¢¿ÉÒÔ±£Ö¤Ð¡³µ×îÖÕÄܹ»ÊµÑéÔÈËÙÖ±ÏßÔ˶¯
D¡¢¿ÉÔÚƽºâĦ²ÁÁ¦ºóʹÓÃϸÉþÀÁ¦µÈÓÚС³µÊܵĺÏÁ¦
£¨2£©Á¬½ÓϸÉþ¼°ÍÐÅÌ£¬ÔÚÍÐÅÌÖзÅÈëÊÊÁ¿µÄíÀÂ룬ͨ¹ýʵÑéµÃµ½Í¼2ËùʾµÄÒ»¶ÎÖ½´ø£¬¼ÆÊýµãA¡¢B¡¢C¡¢D¡¢E¼äµÄʱ¼ä¼ä¸ôΪ0.1s£¬¸ù¾ÝÕâÌõÖ½´ø¿ÉÇó³ö£º£¨½á¹û±£ÁôÁ½Î»ÓÐЧÊý×Ö£©
¢Ù´òµã¼ÆʱÆ÷ÔÚÖ½´øÉÏ´òÏÂDµãʱС³µµÄËٶȴóСΪ0.21m/s£»
¢ÚС³µµÄ¼ÓËٶȴóСΪ0.43m/s2
£¨3£©±£Ö¤ÍÐÅ̺ÍÍÐÅÌÖеÄíÀÂëÖÊÁ¿²»±ä£¬¸Ä±ä·ÅÔÚС³µµÄíÀÂëÖÊÁ¿£¬½øÐжà´Î²âÁ¿£¬µÃµ½Ð¡³µ¼ÓËÙ¶Èa¡¢Ð¡³µ£¨º¬Ð¡³µÖеÄíÀÂ룩×ÜÖÊÁ¿mµÄÊý¾ÝÈç±íËùʾ£º
ʵÑé´ÎÊý | 1 | 2 | 3 | 4 | 5 |
С³µ¼ÓËÙ¶Èa/ms-2 | 0.77 | 0.38 | 0.25 | 0.19 | 0.16 |
С³µ×ÜÖÊÁ¿m/kg | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 |
A£® | ¹âµ¼ÏËάÍâ°ü²ã²ÄÁÏÓ¦ÊǹâÃܽéÖÊ | |
B£® | ºì¹âÔڹ⵼ÏËάÄÚ²¿²à±ÚÉÏ·¢ÉúÈ«·´ÉäµÄÁÙ½ç½ÇСÓÚ×ϹâµÄÁÙ½ç½Ç | |
C£® | ºì¹â´Ó²£Á§Ë¿µÄAB¶ËÃæ´«²¥µ½ÁíÒ»¶ËÃæËùÐèµÄ×ʱ¼ä±È×Ϲⳤ | |
D£® | ºì¹â´Ó²£Á§Ë¿µÄAB¶ËÃæ´«²¥µ½ÁíÒ»¶ËÃæËùÐèµÄ×î¶Ìʱ¼ä±È×Ϲâ¶Ì |
A£® | Íù¸´Ö±ÏßÔ˶¯ | |
B£® | ÔȱäËÙÖ±ÏßÔ˶¯ | |
C£® | ¼ÓËٶȲ»¶Ï¼õС£¬ËٶȲ»¶ÏÔö´óµÄÖ±ÏßÔ˶¯ | |
D£® | ¼ÓËÙ¶ÈÏÈÔö´óºó¼õС£¬ËٶȲ»¶ÏÔö´óµÄÖ±ÏßÔ˶¯ |