题目内容
【题目】如图,空间区域Ⅰ、Ⅱ有匀强电场和匀强磁场,MN、PQ为理想边界,Ⅰ区域高度为d,Ⅱ区域的高度足够大匀强电场方向竖直向上;Ⅰ、Ⅱ区域的磁感应强度大小均为B,方向分别垂直纸面向里和向外一个质量为m,电量为q的带电小球从磁场上方的O点由静止开始下落,进入场区后,恰能做匀速圆周运动已知重力加速度为g.
(1)试判断小球的电性并求出电场强度E的大小;
(2)若带电小球能进入区域Ⅱ,则h应满足什么条件?
(3)若带电小球运动一定时间后恰能回到O点,求它释放时距MN的高度h.
【答案】正电,;;.
【解析】
(1)根据小球所受电场力的方向与场强方向的关系判断小球电性,根据电场力与重力的关系求出电场强度大小.
(2)由机械能守恒定律求出小球进入磁场时的速度,小球在磁场中做匀速圆周运动,作出小球的运动轨迹,由几何知识求出轨道半径,应用牛顿第二定律分析答题.
(3)由机械能守恒定律、牛顿第二定律与几何知识求出h.
(1)带电小球进入复合场后,恰能做匀速圆周运动,合力为洛伦兹力,重力与电场力平衡,重力竖直向下,电场力竖直向上,即小球带正电
由
解得:
(2)假设下落高度为时,带电小球在Ⅰ区域作圆周运动的圆弧与PQ相切时,运动轨迹如答图所示
由几何知识可知,小球的轨道半径:
带电小球在进入磁场前做自由落体运动,由机械能守恒定律得:
带电小球在磁场中作匀速圆周运动,设半径为R,由牛顿第二定律得:
解得:,
则当时,即带电小球能进入Ⅱ区域;
(3)由于带电小球在Ⅰ、Ⅱ两个区域运动过程中q、v、B、m的大小不变,故三段圆周运动的半径相同,以三个圆心为顶点的三角形为等边三角形,边长为2R,内角为,如答图所示由几何关系知:
联立解得得:;
练习册系列答案
相关题目