题目内容
【题目】a、b、c、d四颗地球卫星,a还未发射,在地球赤道上随地球表面一起转动,向心加速度为a1,b处于地面附近近地轨道上正常运动角速度为,c是地球同步卫星离地心距离为r,运行的角速度为,加速度为a2,d是高空探测卫星,各卫星排列位置如图,地球的半径为R。则有( )
A.a的向心加速度等于重力加速度g
B.d的运动周期有可能是20小时
C.
D.
【答案】D
【解析】
A.地球同步卫星c的周期必须与地球自转周期相同,角速度相同,则知a与c的角速度相同,根据a=ω2r知,c的向心加速度大。对公转的卫星由
得
卫星的轨道半径越大,向心加速度越小,则同步卫星c的向心加速度小于b的向心加速度,而b的向心加速度约为g,故知a的向心加速度小于重力加速度g,故A错误;
B.由开普勒第三定律知,卫星的轨道半径越大,周期越大,所以d的运动周期大于c的周期24h,故B错误;
C.a、c的角速度相同,由a=ω2r得
故C错误;
D.由
得
则近地卫星和同步卫星的角速度比值为
故D正确。
故选D。
练习册系列答案
相关题目