ÌâÄ¿ÄÚÈÝ
1£®Ò»Î»Í¬Ñ§³Ë×ù¸ß²ãµçÌÝ£¬µçÌÝÏÈ´Ó¾²Ö¹¿ªÊ¼¾ÔȼÓËÙ¡¢ÔȼõËÙÔ˶¯ÓɵײãÉÏÉýµ½¶¥²ã£¬µ½´ï¶¥²ãʱËÙ¶ÈÇ¡ºÃΪÁ㣬ÉÏÉý×Üʱ¼äΪT1£¬Ô˶¯¹ý³ÌÖеÄ×î´óËÙ¶ÈΪV0£¬µçÌÝÔÙ´Ó¾²Ö¹¿ªÊ¼¾ÔȼÓËÙ£¬ÔÈËÙ£¬ÔȼõËÙÔ˶¯Óɶ¥²ãϽµµ½µ×²ã£¬µ½´ïµ×²ãʱËÙ¶ÈÇ¡ºÃҲΪÁ㣬Ͻµ×Üʱ¼äΪT2£¬Ô˶¯¹ý³ÌÖÐ×î´óËÙ¶ÈΪ$\frac{{V}_{0}}{2}$£¬ÈôµçÌÝ×ö¼ÓËÙÔ˶¯ºÍ¼õËÙÔ˶¯µÄ¼ÓËٶȴóСÏàµÈ£¬ÇÒϽµÊ±µÄ¼ÓËٶȵĴóСÊÇÉÏÉýʱµÄ¼ÓËٶȴóСµÄÒ»°ë£¬Çó±ÈÖµT1£ºT2£®·ÖÎö ÁîÉÏÉýʱµÄ¼ÓËÙ¶ÈΪa£¬ÔòϽµÊ±µÄ¼ÓËÙ¶ÈΪ$\frac{a}{2}$£¬¸ù¾ÝËÙ¶Èʱ¼ä¹ØϵºÍλÒÆʱ¼ä¹Øϵ·ÖÎöÇó½â¼´¿É£®
½â´ð ½â£ºÁîÉÏÉýʱµÄ¼ÓËÙ¶ÈΪa£¬ÔòϽµÊ±µÄ¼ÓËÙ¶ÈΪ$\frac{a}{2}$£¬
ÔòÉÏÉýʱµÄʱ¼ä${T}_{1}=\frac{{v}_{0}}{a}+\frac{{v}_{0}}{a}=\frac{2{v}_{0}}{a}$£¬ÉÏÉýµÄ¾àÀë$h=\frac{{v}_{0}^{2}}{2a}+\frac{{v}_{0}^{2}}{2a}=\frac{{v}_{0}^{2}}{a}$
ϽµÊ±µÄ¼ÓËÙʱ¼ä${t}_{2}=\frac{\frac{{v}_{0}}{2}}{\frac{a}{2}}=\frac{{v}_{0}}{a}$£¬¼ÓËÙϽµµÄλÒÆ${h}_{2}=\frac{£¨\frac{{v}_{0}^{\;}}{2}£©^{2}}{2¡Á\frac{a}{2}}=\frac{{v}_{0}^{2}}{4a}$
ϽµÊ±µÄ¼õËÙÔ˶¯Ê±¼ä${t}_{2}¡ä=\frac{\frac{{v}_{0}}{2}}{\frac{a}{2}}=\frac{{v}_{0}}{a}$£¬¼õËÙϽµµÄλÒÆ${h}_{2}¡ä=\frac{£¨\frac{{v}_{0}}{2}£©^{2}}{2¡Á\frac{a}{2}}=\frac{{v}_{0}^{2}}{4a}$
ËùÒÔÔÈËÙϽµµÄλÒÆ${h}_{2}¡å=h-{h}_{2}-{h}_{2}¡ä=\frac{{v}_{0}^{2}}{2a}$£¬ÔÈËÙϽµµÄʱ¼ä${t}_{2}¡å=\frac{{h}_{2}¡å}{\frac{{v}_{0}}{2}}=\frac{{v}_{0}}{a}$
ËùÒÔϽµµÄ×Üʱ¼ä${T}_{2}={t}_{2}+{t}_{2}¡ä+{t}_{2}¡å=\frac{3{v}_{0}}{a}$
ËùÒԿɵãº$\frac{{T}_{1}}{{T}_{2}}=\frac{2}{3}$
´ð£º±ÈÖµT1£ºT2=2£º3£®
µãÆÀ ÕÆÎÕ¶à±äËÙÖ±ÏßÔ˶¯µÄËÙ¶Èʱ¼ä¹ØϵºÍλÒÆʱ¼ä¹ØϵÊÇÕýÈ·½âÌâµÄ¹Ø¼ü£¬²»ÄÑÊôÓÚ»ù´¡Ì⣮
A£® | æ϶ð¶þºÅµÄ¼ÓËٶȴóÓÚµØÇòµÄ¼ÓËÙ¶È | |
B£® | æ϶ð¶þºÅµÄÏßËÙ¶ÈСÓÚµØÇòµÄÏßËÙ¶È | |
C£® | æ϶ð¶þºÅÈÆÌ«Ñô¹«×ªµÄÖÜÆÚ´óÓÚÒ»Äê | |
D£® | æ϶ð¶þºÅËùÐèµÄÏòÐÄÁ¦½öÓÉÌ«ÑôÌṩ |
A£® | СÇòA´øÕýµç£¬B²»´øµç£¬C´ø¸ºµç | |
B£® | СÇòA´ø¸ºµç£¬B²»´øµç£¬C´øÕýµç | |
C£® | Èý¸öСÇòÔڵ糡ÖÐÔ˶¯µÄ¼ÓËÙ¶ÈÏàͬ | |
D£® | Èý¸öСÇòÔڵ糡ÖÐÔ˶¯Ê±¼äÏàµÈ£¬ÒòΪСÇòµÄÊúֱλÒÆÏàͬ |
A£® | v=£¨4+2t£©m/s | B£® | v=£¨-4+2t£©m/s | C£® | x=£¨-4t+t2£©m | D£® | x=£¨-4t-t2£©m/s |
A£® | µ¼ÌåÄÚ²¿µç³¡Ç¿¶ÈÒ»¶¨Îª0 | |
B£® | µ¼ÌåµÄµçÊÆÒ»¶¨Îª0 | |
C£® | µ¼Ìå±íÃæºÍÄÚ²¿µÄµçÊÆÏàµÈ | |
D£® | µ¼Ìå±íÃæµÄµçÊÆ¿ÉÄÜ´óÓÚÄÚ²¿µÄµçÊÆ |
A£® | $\sqrt{2gR}$ | B£® | $\sqrt{3gR}$ | C£® | $\sqrt{4gR}$ | D£® | $\sqrt{5gR}$ |