题目内容

【题目】两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.5T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m,两根质量均m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过T=5.0s,金属杆甲的加速度为a=1.37 m/s2,求此时两金属杆的速度各为多少?

【答案】8.15m/s 1.85m/s

【解析】

设任一时刻两金属杆甲、乙之间的距离为,速度分别为,经过很短时间,杆甲移动距离,杆乙移动距离,回路面积改变

由法拉第电磁感应定律,回路中的感应电动势:

回路中的电流:

杆甲的运动方程:

由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量变化(时为0)等于外力F的冲量:

联立以上各式解得

代入数据得=8.15m/s =1.85m/s

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网