ÌâÄ¿ÄÚÈÝ

9£®½ü´úµÄ²ÄÁÏÉú³¤ºÍ΢¼Ó¹¤¼¼Êõ£¬¿ÉÖÆÔì³öÒ»ÖÖʹµç×ÓµÄÔ˶¯ÏÞÖÆÔÚ°ëµ¼ÌåµÄÒ»¸öƽÃæÄÚ£¨¶þά£©µÄ΢½á¹¹Æ÷¼þ£¬ÇÒ¿É×öµ½µç×ÓÔÚÆ÷¼þÖÐÏñ×Óµ¯Ò»Ñù·ÉÐУ¬²»ÊÜÔÓÖÊÔ­×ÓÉäÉ¢µÄÓ°Ï죮ÕâÖÖÌصã¿ÉÍûÓÐеÄÓ¦ÓüÛÖµ£®Í¼1ËùʾΪËĶËÊ®×ÖÐΣ¬¶þάµç×ÓÆø°ëµ¼Ì壬µ±µçÁ÷´Ól¶Ë½øÈëʱ£¬Í¨¹ý¿ØÖƴų¡µÄ×÷Ó㬿ÉʹµçÁ÷´Ó 2¡¢3»ò4¶ËÁ÷³ö£®¶ÔÏÂÃæÃþÄâ½á¹¹µÄÑо¿£¬ÓÐÖúÓÚÀí½âµçÁ÷ÔÚÉÏÊöËĶËÊ®×ÖÐε¼ÌåÖеÄÁ÷¶¯£®ÔÚͼ2ÖУ¬a¡¢b¡¢c¡¢dΪËĸù°ë¾¶¶¼ÎªRµÄÔ²ÖùÌåµÄºá½ØÃ棬±Ë´Ë¿¿µÃºÜ½ü£¬ÐγÉËĸö¿í¶È¼«Õ­µÄÏÁ·ì1¡¢2¡¢3¡¢4£¬ÔÚÕâЩÏÁ·ìºÍËĸöÔ²ÖùËù°üΧµÄ¿Õ¼ä£¨ÉèΪÕæ¿Õ£©´æÔÚÔÈÇ¿´Å³¡£¬´Å³¡·½Ïò´¹Ö±ÓÚÖ½ÃæÏòÀһ¸öÖÊÁ¿Îªm¡¢µçºÉÁ¿ÎªqµÄ´øÕýµçµÄÁ£×Ó£¬Óɾ²Ö¹¾­µç³¡¼ÓËÙºó£¬ÔÚÖ½ÃæÄÚÒÔËÙ¶Èv0ÑØÓëa¡¢b¶¼ÏàÇеķ½ÏòÓÉ·ì1ÉäÈë´Å³¡ÄÚ£¬ÓëÆäÖÐÒ»¸öÔ²Öù±íÃæ·¢ÉúÒ»´Îµ¯ÐÔÅöײ£¨ÅöײÎÞ»úеÄÜËðʧ£©£¬´Ó·ì2´¦ÇÒÑØÓëb¡¢c¶¼ÏàÇеķ½ÏòÉä³ö£¬Åöײʱ¼ä¼«¶Ì£¬ÇÒÅöײ²»¸Ä±äÁ£×ӵĵçºÉÁ¿£¬Ò²²»ÊÜĦ²ÁÁ¦×÷Óã¬ÖØÁ¦ºöÂÔ²»¼Æ£®¼ÓËٵ糡Á½°å¼ä¾àΪd£¬Á½¼«°åºñ¶È²»¼ÆÇÒÆäÓÒ¼«°åÓëÔ²Öùa¡¢bͬʱÏàÇУ®

£¨1£©Çó¼ÓËٵ糡µçѹU£®
£¨2£©Çó´Å¸ÐӦǿ¶ÈB£®
£¨3£©Çó´ÓÓɾ²Ö¹¼ÓËÙµ½´Ó·ì2Éä³öËùÓõÄʱ¼ät£®

·ÖÎö £¨1£©Ôڵ糡ÖмÓËÙ£¬¸ù¾Ý¶¯Äܶ¯Äܶ¨Àí¼ÆËãËٶȵĴóС£»
£¨2£©Á£×Ó´Ó·ì1½øÈë´Å³¡£¬ÔÚÂåÂØ×ÈÁ¦×÷ÓÃÏÂ×÷Ô²ÖÜÔ˶¯£¬Ô²¹ìµÀÔÚÔ­µãÓëxÖáÏàÇУ¬¹ÊÆäÔ²ÐıØÔÚyÖáÉÏ£®ÓÉÊýѧ֪ʶµÃµ½¹ì¼£Ô²µÄ·½³Ì£¬Óɼ¸ºÎ֪ʶµÃµ½Åöײ´¦µÄ×ø±êÓëRµÄ¹Øϵʽ£¬ÁªÁ¢Çó½âµÃµ½r£»È»ºóÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÁз½³ÌµÃµ½B£»
£¨3£©ÀûÓÃÔ²ÖÜÔ˶¯µÄÖÜÆÚÀ´¼ÆËãÔ˶¯Ê±¼ä£»

½â´ð ½â£º£¨1£©Á£×ÓÓɾ²Ö¹Ôڵ糡ÖмÓËÙ£º$qU=\frac{1}{2}m{v}^{2}$¡­£¨1£©
½âµÃ£º$U=\frac{m{v}^{2}}{2q}$¡­£¨2£©
£¨2£©ÔÚͼÖÐÖ½ÃæÄÚÈ¡Oxy×ø±ê£¨Èçͼ£©£¬Ô­µãÔÚÏÁ·ìl´¦£¬xÖá¹ý·ì1ºÍ·ì3£®Á£×Ó´Ó·ì1½øÈë´Å³¡£¬ÔÚÂåÂØ×ÈÁ¦×÷ÓÃÏÂ×÷Ô²ÖÜÔ˶¯£¬Ô²¹ìµÀÔÚÔ­µãÓëxÖáÏàÇУ¬¹ÊÆäÔ²ÐıØÔÚyÖáÉÏ£®ÈôÒÔr±íʾ´ËÔ²µÄ°ë¾¶£¬ÔòÔ²·½³ÌΪ£º
x2+£¨ r-y£©2=r2¡­£¨3£©
¸ù¾ÝÌâµÄÒªÇóºÍ¶Ô³ÆÐÔ¿ÉÖª£¬Á£×ÓÔڴų¡ÖÐ×÷Ô²ÖÜÔ˶¯Ê±Ó¦Óëd£¬µÄÖùÃæÏàÅöÓÚ·ì3¡¢4¼äµÄÔ²»¡Öе㴦£¬Åöײ´¦µÄ×ø±êΪ£º
x=2R-Rsin45¡ã¡­£¨4£©
y=R-R cos45¡ã¡­£¨5£©
ÓÉ£¨3£©¡¢£¨4£©¡¢£¨5£©Ê½µÃ£ºr=3R¡­£¨6£©
ÓÉ3456ʽ¿ÉдΪÓÉÊýѧ¼¸ºÎ֪ʶ¿ÉµÃ£ºr=3R£¬
ÓÉÂåÂØ×ÈÁ¦ºÍÅ£¶Ù¶¨ÂÉÓУºqv0B=m$\frac{{{v}_{0}}^{2}}{r}$¡­£¨7£©
ÓÉ£¨6£©¡¢£¨7£©Ê½µÃ£ºB=$\frac{m{v}_{0}}{3qR}$¡­£¨8£©
£¨3£©Ôڵ糡ÖмÓËÙÓÃʱ£º${t}_{1}=\frac{d}{\frac{{v}_{0}}{2}}$¡­9£©
Ôڴų¡ÖÐת¹ýÁ½¶ÎÔ²»¡£¬Éèÿ¶ÎÔ²»¡¶ÔÓ¦Ô²ÐĽÇΪ¦ÈÓУº$sin¦È=\frac{x}{r}$¡­£¨10£©
ÇҴų¡ÖÐÓÃʱ£º${t}_{2}=\frac{2r¦È}{{v}_{0}}$¡­£¨11£©
${t}_{3}=\frac{R}{{v}_{0}}$¡­£¨12£©
×ܹ²ÓÃʱ£ºt=t1+t2+t3¡­£¨13£©
ÓÉ£¨4£©¡¢£¨9£©¡¢£¨10£©¡¢£¨11£©¡¢£¨12£©Ê½µÃ£º
$t=\frac{2d+6Rarcsin\frac{4-\sqrt{2}}{6}}{{v}_{0}}+\frac{R}{{v}_{0}}$¡­£¨14£©
´ð£º£¨1£©¼ÓËٵ糡µçѹUΪ$\frac{m{v}^{2}}{2q}$£®
£¨2£©´Å¸ÐӦǿ¶ÈBΪ$\frac{m{v}_{0}}{3qR}$£®
£¨3£©Óɾ²Ö¹¼ÓËÙµ½´Ó·ì2Éä³öËùÓõÄʱ¼ätΪ$\frac{2d+6Rarcsin\frac{4-\sqrt{2}}{6}}{{v}_{0}}+\frac{R}{{v}_{0}}$£®

µãÆÀ ´øµçÁ£×ÓÔڴų¡ÖеÄÔ˶¯£¬Ò»°ãÓ¦ÏÈÃ÷È·Á£×ÓÔ˶¯µÄÔ²ÐĺͰ뾶£¬ÔÙ¸ù¾ÝÌâÒâ×÷³ö´øµç×ӵĿÉÄܵÄÔ˶¯¹ì¼££»ÔÙ¸ù¾Ý¼¸ºÎ¹Øϵ¼°ÏàÓ¦µÄÊýѧ֪ʶ½øÐÐÇó½â£¬Ò»°ã×÷ΪѹÖáÌâ³ÊÏÖ£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø