题目内容
【题目】如图所示,两根竖直放置的足够长的光滑平行金属导轨间距l=0.50m,上端接有阻值R=0.80Ω的定值电阻,导轨的电阻可忽略不计。导轨处于磁感应强度B=0.40T、方向垂直于金属导轨平面向外的有界匀强磁场中,磁场的上边界如图中虚线所示,虚线下方的磁场范围足够大。一根质量m=4.0×10-2kg、电阻r=0.20Ω的金属杆MN,从距磁场上边界h=0.20m高处,由静止开始沿着金属导轨下落。已知金属杆下落过程中始终与两导轨垂直且接触良好,重力加速度g=10m/s2,不计空气阻力。
(1)求金属杆刚进入磁场时通过电阻R的电流大小;
(2)求金属杆刚进入磁场时的加速度大小;
(3)若金属杆进入磁场区域一段时间后开始做匀速直线运动,则金属杆在匀速下落过程中其所受重力对它做功的功率为多大?
【答案】(1)0.40A;(2)8.0m/s2;(3)4.0W;
【解析】(1)金属杆MN自由下落,设MN刚进入磁场时的速度为v,
根据机械能守恒定律,有:
解得:v==2.0m/s
MN刚进入磁场时产生的感应电动势 E=Blv =0.4×0.5×2V=0.40V
通过电阻R的电流大小 I==0.40A
(2)MN刚进入磁场时F安=BIl =0.4×0.4×0.5N=0.08N
设MN刚进入磁场时的加速度大小为a,根据牛顿第二运动定律,
有mg - F安=ma
解得 a=8.0m/s2
(3)根据力的平衡条件可知,MN在磁场中匀速下落时有 mg=F安
设MN在磁场中匀速下落时的速度为vm,则此时的感应电动势E=Blvm,
感应电流I= Blvm/(R+r),安培力F安=B2l2vm/(R+r)
联立可解得 vm==10.0 m/s
在匀速下落过程中重力对金属杆做功的功率P=mgvm=4.0W
练习册系列答案
相关题目