题目内容

(1)某同学得用图1所示装置做“研究平抛运动”的实验,根据实验结果在坐标纸上描出了小球水平抛出后的运动轨迹,但不慎将画有轨迹图线的坐标纸丢失了一部分,剩余部分如图2所示,图2中水平方向与竖直方向每小格的长度均代表0.10m,P1、P2和P3是轨迹图线上的3个点,P1和P2、P2和P3之间的水平距离相等.
完成下列填空:(重力加速度取9.8m/s2
①设P1、P2、和P3的横坐标分别为x1、x2和x3,纵坐标分别为y1、y2和y3,从图2中可读出|y1-y2|=
0.60
0.60
m,|y1-y3|=
1.60
1.60
m,|x1-x2|=
0.60
0.60
m(保留两位小数).
②若已测知抛出后小球在水平方向做匀速运动,利用(1)中读取的数据,求小球从P1运动到P2所用的时间为
0.20
0.20
s,小球抛出后的水平速度为
3.0
3.0
m/s(均可用根号表示).,
③已测得小球抛也前下滑的高度为0.50m,设E1和E2分别为开始下滑时和抛也时的机械能,则小球从开始下滑到抛出的过程中机械能的相对损失,
E1-E2
E1
×100%=
8.2
8.2
%(保留两位有效数字)
(2)某同学设计了如图3所示的电路测电源电动势E及内阻r和R1的阻值.实验器材有:待测电源E,待测电阻R1,电压表V(量程为1.5V,内阻很大),电阻箱R(0~99.99Ω);单刀单掷开关S1,单刀双掷开关S2,导线若干.
①先测电阻R1的阻值.请将该同学的操作补充完整:闭合S1,将S2切换到a,调节电阻箱,读出其示数R和对应的电压表示数U1,保持电阻箱示数不变,
将S2切换到b
将S2切换到b
,读出电压表的示数U2.则电阻R1的表达式为R1=
(U2-U1)R
U1
(U2-U1)R
U1

②该同学已经测得电阻R1=3.0Ω,继续测电源电动势E和内阻r的阻值.该同学的做法是:闭合S1,将S2切换到a,多次调节电阻箱,读出多组电阻箱示数R和对应的电压表示数U,由测得的数据,绘出了如图4所示的图线,则电源电动势E=
5
5
V,内阻 r=
2
2
Ω.
分析:(1)据竖直方向运动特点△h=gt2,求出物体运动时间,然后利用水平方向运动特点即可求出平抛的初速度(水平速度).根据机械能的定义,算出两个状态的机械能,代入公式即可正确解答.
(2)保持电阻箱阻值不变,把单刀双掷开关接到b,读出电压表示数,由串联电路特点与欧姆定律求出定值电阻阻值;由闭合电路的欧姆定律求出
1
R
-
1
U
的函数表达式,然后根据图象求出电源电动势与内阻.
解答:解:(1)①根据图(2)可解得:|y1-y2|=0.60m,|y1-y3|=1.60m,|x1-x2|=0.60m.
②小球经过P1、P2、和P3之间的时间相等,在竖直方向有:h1=0.60m,h2=1.60-0.60=1.00m
连续相等时间内的位移差为常数:△h=gt2,水平方向匀速运动:x=v0t,
其中△h=1.00-0.60=0.40m,x=0.60m,代入数据解得:t=0.20s,v0=3.0m/s
③设开始抛出时所在位置为零势能面,所以有:E1=mgh=0.50×9.8×m=4.9mJ,
E2=
1
2
mv02=
1
2
m×32=4.5mJ;
E1-E2
E1
×100%=8.2%.
(2)①闭合S1,将S2切换到a,调节电阻箱,读出其示数R和对应的电压表示数U1
保持电阻箱示数不变,将S2切换到b,读出电压表的示数U2.电路电流I=
U1
R

电阻R1的阻值R1=
UR1
I
=
U2-U1
U1
R
=
(U2-U1)R
U1

②电源电动势E=U+I(r+R1)=U+
U
R
(r+R1),
1
R
=
E
R1+r
1
U
-
1
R1+r

1
R
-
1
U
图象可得:-
1
R1+r
=-0.2,电源内阻r=2Ω,
E
R1+r
=
0.2
0.2
=1,
电源电动势E=1×(R1+r)=1×(3+2)=5V;
故答案为:(1)①0.60;1.60;0.60;②0.20;3.0;③8.2.(2)①
(U2-U1)R
U1
;②5;2.
点评:(1)本题主要考察了平抛运动规律的理解和应用,尤其是有关匀变速直线运动规律以及推论的应用,同时考查有关机械能的损失问题,是一道考查能力的好题目.
(2)本题为伏阻法测电动势和内电阻,但由于过程较为复杂,故应认真审题,明确题中的实验原理;同时要注意电源内电阻忽略不计,R2可等效为内电阻处理.
练习册系列答案
相关题目
(1)某同学用如图1所示的装置进行“验证动量守恒定律”的实验:

①先测出可视为质点的两材质相同滑块A、B的质量分别为m、M及滑块与桌面间的动摩擦因数μ.
②用细线将滑块A、B连接,使A、B间的轻弹簧处于压缩状态,滑块B恰好紧靠桌边.
③剪断细线,测出滑块B做平拋运动的水平位移x1,滑块A沿水平桌面滑行距离为x2(未滑出桌面).
为验证动量守恒定律,写出还需测量的物理量及表示它们的字母
物体B下落的高度h
物体B下落的高度h
;如果动量守恒,需要满足的关系式为
Mx1
g
2h
═m
2gμx2
Mx1
g
2h
═m
2gμx2

(2)某实验小组利用拉力传感器和速度传感器探究功和动能变化的关系,如图2所示,他们将拉力传感器固定在小车上,用不可伸长的细线将其通过一个定滑轮与钩码相连,用拉力传感器记录小车受到拉力的大小.在水平桌面上相距50.0cm的A、B两点各安装一个速度传感器,记录小车通过A、B时的速度大小.小车中可以放置砝码.
(Ⅰ)实验中木板略微倾斜,这样做目的是
CD
CD

A.是为了使释放小车后,小车能匀加速下滑
B.是为了增大小车下滑的加速度
C.可使得细线拉力做的功等于合力对小车做的功
D.可使得小车在未施加拉力时做匀速直线运动
(Ⅱ)实验主要步骤如下:
①测量
小车、砝码
小车、砝码
和拉力传感器的总质量M1;把细线的一端固定在拉力传感器上,另一端通过定滑轮与钩码相连;正确连接所需电路.
②将小车停在C点,接通电源,
静止释放小车
静止释放小车
,小车在细线拉动下运动,记录细线拉力及小车通过A、B时的速度.
③在小车中增加砝码,或增加钩码个数,重复②的操作.
(Ⅲ)下表是他们测得的一组数据,其中M1是传感器与小车及小车中砝码质量之和,|v
 
2
2
-v
 
2
1
|是两个速度传感器记录速度的平方差,可以据此计算出动能变化量△E,F是拉力传感器受到的拉力,W是拉力F在A、B间所做的功.表格中△E3=
0.600
0.600
,W3=
0.610
0.610
 (结果保留三位有效数字).
次数 M1/kg |v
 
2
2
-v
 
2
1
|/(m/s)2
△E/J F/N W/J
1 0.500 0.760 0.190 0.400 0.200
2 0.500 1.65 0.413 0.840 0.420
3 0.500 2.40 △E3 1.220 W3
4 1.000 2.40 1.20 2.420 1.21
5 1.000 2.84 1.42 2.860 1.43
(1)某同学用如图1所示装置探究小车的加速度与力、质量的关系,实验中,他把钩码重力当作小车受到的合力.①为减小把钩码的重力当作小车受到的合力而带来的误差,实验中,除了拉小车的细线与长木板平行外.①还应采取的措施有:
 
 
.(填两条)
②木块从静止开 始运动,利用打点计时器在纸带上记录木块的运动情况,如图2所示,其中O点为纸带上记录到的第一点.A、B、C是该同学在纸带上所取的一些点,下图所标明的数据为A、B、C各点到O点的距离,已知打点计时器所用交流电源频率f=50Hz,木块运动的加速度a=
 
m/s2.(计算结果保留两位有效数字)
精英家教网
(2)有一根长陶瓷管,其表面均匀地镀有一层很薄的电阻膜,管的两端有导电箍M和N,如图3所示.用多用表电阻档测得MN间的电阻膜的电阻约为100Ω,陶瓷管的直径远大于电阻膜的厚度.某同学利用下列器材设计了一个测量该电阻膜厚度d的实验.
A.刻度尺(最小分度为mm);  B.游标卡尺;
C.电流表A1(量程0~300mA,内阻约0.2Ω);
D.电流表A2 (量程0~100mA,内阻约0.6Ω);
E.电压表V1 (量程10V,内阻约5kΩ);
F.电压表V2 (量程5V,内阻约3kΩ);
G.滑动变阻器R1 (阻值范围0~30Ω,额定电流1.5A);
H.滑动变阻器R2 (阻值范围0~1.5KΩ,额定电流1A);
I.电源E (电动势9V,内阻可不计);     J.开关一个,导线若干.
①他用毫米刻度尺测出电阻膜的长度为l,用游标卡尺测量该陶瓷管的外径D.
②为了比较准确地测量电阻膜的电阻,且调节方便,实验中应选用电流表
 
,电压表
 
,滑动变阻器
 
.(填写器材前面的字母代号)
③在答题卷方框内画出测量电阻膜的电阻R的实验电路图.
④若电压表的读数为U,电流表的读数为I,镀膜材料的电阻率为ρ,计算电阻膜厚度d (d远小于D)的表达式为:d=
 
(用所测得的量和已知量的符号表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网