ÌâÄ¿ÄÚÈÝ
5£®ÈçͼËùʾ£¬Ë®Æ½´«ËÍ´øµÄƤ´øÒԺ㶨µÄËÙ¶Èv=2m/sÔ˶¯£¬Ò»¸öÖÊÁ¿Îªm=2kgСÎï¿éÔÚÁ½ÂÖµÄÖмäÒÔËÙ¶Èv=2m/sÓëƤ´øÔ˶¯·½ÏòÏ෴ˮƽ»¬ÉÏƤ´ø£¬Ë®Æ½Æ¤´ø³¤ÎªL=4m£¬Îï¿éÓëƤ´ø¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì=0.2£®£¨gÈ¡10m/s2£©Ç󣺣¨1£©Îï¿éÔÚƤ´øÉÏÔ˶¯µÄʱ¼ä
£¨2£©Îï¿éÔÚƤ´øÉÏÔ˶¯µÄÕû¸ö¹ý³ÌÖУ¬Ä¦²ÁÁ¦¶ÔÎï¿é×öµÄ¹¦
£¨3£©Îï¿éÔÚƤ´øÉÏÔ˶¯µÄÕû¸ö¹ý³ÌÖУ¬ÒòĦ²Á²úÉúµÄÈÈÁ¿£®
·ÖÎö £¨1£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÎïÌåµÄ¼ÓËٶȣ¬È»ºóÓ¦ÓÃÔ˶¯Ñ§¹«Ê½Çó³öÎï¿éµÄÔ˶¯Ê±¼ä£®
£¨2£©Ó¦Óö¯Äܶ¨ÀíÇó³öĦ²ÁÁ¦¶ÔÎïÌå×öµÄ¹¦£®
£¨3£©Ó¦ÓÃÄÜÁ¿Êغ㶨ÂÉ¿ÉÒÔÇó³öµç¶¯»ú¿Ë·þĦ²ÁÁ¦×öµÄ¹¦£®
½â´ð ½â£º£¨1£©Îï¿éÏÈÏò×ó¼õËÙÔÙÏòÓÒ¼ÓËÙ£¬¼ÓËٶȴóСΪ a=$\frac{¦Ìmg}{m}$=¦Ìg
Îï¿é»Øµ½³ö·¢µãʱ¼äΪ ${t_1}=2\frac{v}{¦Ìg}=2s$
È»ºóÔÙËæƤ´øÔÈËÙÔ˶¯µ½¶Ëµãʱ¼äΪ ${t_2}=\frac{L}{2v}=1s$
Îï¿éÔÚƤ´øÉÏÔ˶¯µÄʱ¼ä t=t1+t2=3s
£¨2£©Îï¿éÔÚƤ´øÉÏÏÈÏò×ó×öÔȼõËÙÔ˶¯£¬ºóÏòÓÒ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬À뿪Ƥ´øʱµÄËٶȴóСµÈÓÚƤ´øµÄËÙ¶È2m/s£¬ÓëÎï¿é»¬ÉÏƤ´øµÄËٶȴóСÏàµÈ£¬×îºóÎï¿éÏà¶ÔƤ´ø¾²Ö¹£¬ÔÚÕû¸öÔ˶¯¹ý³ÌÖÐÎï¿éµÄ¶¯Äܲ»±ä£¬¶¯Äܵı仯ΪÁ㣬Óɶ¯Äܶ¨Àí¿ÉÖª£¬Ä¦²ÁÁ¦¶ÔÎï¿é×ö¹¦Îª0J£®
£¨3£©Îï¿éÓë´«ËÍ´øµÄÏà¶ÔλÒÆ ${s_{Ïà¶Ô}}=\frac{{{{£¨2v£©}^2}}}{2¦Ìg}=\frac{{2{v^2}}}{¦Ìg}$
ÒòĦ²Á²úÉúµÄÈÈÁ¿ $Q=f•{s_{Ïà¶Ô}}=¦Ìmg•\frac{{2{v^2}}}{¦Ìg}=2m{v^2}=16J$
´ð£º
£¨1£©Îï¿éÔÚƤ´øÉÏÔ˶¯µÄʱ¼äΪ2s£»
£¨2£©Îï¿éÔÚƤ´øÉÏÔ˶¯µÄÕû¸ö¹ý³ÌÖУ¬Ä¦²ÁÁ¦¶ÔÎï¿é×öµÄ¹¦Îª0J£»
£¨3£©Îï¿éÔÚƤ´øÉÏÔ˶¯µÄÕû¸ö¹ý³ÌÖУ¬µç¶¯»ú¿Ë·þĦ²Á×öµÄ¹¦Îª16J£®
µãÆÀ ±¾Ì⿼²éÁËÇóÎï¿éµÄÔ˶¯Ê±¼ä¡¢Ç󹦵ÈÎÊÌ⣬·ÖÎöÇå³þÎï¿éµÄÔ˶¯¹ý³ÌÊÇÕýÈ·½âÌâµÄÇ°ÌáÓë¹Ø¼ü£¬Ó¦ÓÃÔȱäËÙÔ˶¯Ô˶¯¹æÂÉ¡¢¶¯Äܶ¨Àí¡¢ÄÜÁ¿Êغ㶨Âɼ´¿ÉÕýÈ·½âÌ⣮
A£® | ¿ÉÒÔÇó³öÔÂÇòµÄÖÊÁ¿ | |
B£® | ¿ÉÒÔÇó³ö¡°æ϶ðÒ»ºÅ¡±µÄÖÊÁ¿ | |
C£® | ¿ÉÒÔÇó³öÔÂÇò¶Ô¡°æ϶ðÒ»ºÅ¡±ÎÀÐǵÄÒýÁ¦ | |
D£® | ¡°æ϶ðÒ»ºÅ¡±ÎÀÐÇÔÚ¿ØÖƵ㴦Ӧ¼ÓËÙ |
A£® | ´ÓÕ¾Á¢µ½Ô¾Æð¹ý³ÌÖУ¬µØÃæ¶ÔËû×öµÄ¹¦ÎªÁã | |
B£® | ´ÓÕ¾Á¢µ½Ô¾Æð¹ý³ÌÖУ¬µØÃæ¶ÔËû×öµÄ¹¦Îª$\frac{1}{2}$mv2 | |
C£® | À뿪µØÃæºóµÄÉÏÉý¹ý³ÌÖУ¬ÖØÁ¦¶ÔËû×ö¸º¹¦ | |
D£® | À뿪µØÃæºóµÄÉÏÉý¹ý³ÌÖУ¬Ëû´¦ÓÚ³¬ÖØ״̬ |
A£® | v1£¼v2 | B£® | v1£¾v2 | C£® | v1=v2 | D£® | ÎÞ·¨È·¶¨ |
A£® | F | B£® | $\frac{F}{2}$ | C£® | $\frac{F}{4}$ | D£® | $\frac{F}{9}$ |