ÌâÄ¿ÄÚÈÝ
10£®Ú¤ÍõÐÇÈÆÌ«ÑôµÄ¹«×ª¹ìµÀÊǸöÍÖÔ²£¬¹«×ªÖÜÆÚΪT0£¬ÖÊÁ¿Îªm£¬Æä½üÈÕµãAµ½Ì«ÑôµÄ¾àÀëΪa£¬Ô¶ÈÕµãCµ½Ì«ÑôµÄ¾àÀëΪb£¬°ë¶ÌÖáµÄ³¤¶ÈΪc£¬A¡¢CÁ½µãµÄÇúÂʰ뾶¾ùΪka£¨Í¨¹ý¸ÃµãºÍÇúÏßÉϽôÁڸõãÁ½²àµÄÁ½µã×÷Ò»Ô²£¬ÔÚ¼«ÏÞÇé¿öÏ£¬Õâ¸öÔ²¾Í½Ð×ö¸ÃµãµÄÇúÂÊÔ²£¬Æä°ë¾¶½Ð×ö¸ÃµãµÄÇúÂʰ뾶£©£¬ÈçͼËùʾ£®ÈôÌ«ÑôµÄÖÊÁ¿ÎªM£¬ÍòÓÐÒýÁ¦³£Á¿ÎªG£¬ºöÂÔÆäËûÐÐÐǶÔËüµÄÓ°Ïì¼°Ì«Ñô°ë¾¶µÄ´óС£¬Ôò£¨¡¡¡¡£©A£® | Ú¤ÍõÐÇ´ÓA¡úBËùÓõÄʱ¼äСÓÚ$\frac{{T}_{0}}{4}$ | |
B£® | Ú¤ÍõÐÇ´ÓC¡úD¡úAµÄ¹ý³ÌÖУ¬ÍòÓÐÒýÁ¦¶ÔËü×öµÄ¹¦Îª$\frac{1}{2}$GMmk£¨$\frac{2}{a}$-$\frac{a}{{b}^{2}}$£© | |
C£® | Ú¤ÍõÐÇ´ÓC¡úD¡úAµÄ¹ý³ÌÖУ¬ÍòÓÐÒýÁ¦¶ÔËü×öµÄ¹¦Îª$\frac{1}{2}$GMmk£¨$\frac{1}{a}$-$\frac{a}{{b}^{2}}$£© | |
D£® | Ú¤ÍõÐÇÔÚBµãµÄ¼ÓËÙ¶ÈΪ$\frac{4GM}{{{{£¨b-a£©}^2}+4{c^2}}}$ |
·ÖÎö Êì¼ÇÀí½â¿ªÆÕÀÕµÄÐÐÐÇÔ˶¯Èý¶¨ÂÉ£º
µÚÒ»¶¨ÂÉ£ºËùÓеÄÐÐÐÇΧÈÆÌ«ÑôÔ˶¯µÄ¹ìµÀ¶¼ÊÇÍÖÔ²£¬Ì«Ñô´¦ÔÚËùÓÐÍÖÔ²µÄÒ»¸ö½¹µãÉÏ£®
µÚ¶þ¶¨ÂÉ£º¶Ôÿһ¸öÐÐÐǶøÑÔ£¬Ì«ÑôÐÐÐǵÄÁ¬ÏßÔÚÏàͬʱ¼äÄÚɨ¹ýµÄÃæ»ýÏàµÈ£®
µÚÈý¶¨ÂÉ£ºËùÓÐÐÐÐǵĹìµÀµÄ°ë³¤ÖáµÄÈý´Î·½¸ú¹«×ªÖÜÆڵĶþ´Î·½µÄ±ÈÖµ¶¼ÏàµÈ£®
¸ù¾Ý¹¦ÄܹØϵ֪ÍòÓÐÒýÁ¦×ö¹¦£®
½â´ð ½â£ºA¡¢¹«×ªÖÜÆÚΪT0£¬Ú¤ÍõÐÇ´ÓA¡úCµÄ¹ý³ÌÖÐËùÓõÄʱ¼äÊÇ0.5T0£¬
ÓÉÓÚÚ¤ÍõÐÇ´ÓA¡úB¡úCµÄ¹ý³ÌÖУ¬ËÙÂÊÖð½¥±äС£¬´ÓA¡úBÓë´ÓB¡úCµÄ·³ÌÏàµÈ£¬
ËùÒÔÚ¤ÍõÐÇ´ÓA¡úBËùÓõÄʱ¼äСÓÚ$\frac{{T}_{0}}{4}$£¬¹ÊAÕýÈ·£»
BC¡¢ÍòÓÐÒýÁ¦¶ÔËü×öµÄ¹¦µÈÓÚÊÆÄܵļõСÁ¿£¬µÈÓÚ¶¯ÄܵÄÔö¼ÓÁ¿W=$\frac{1}{2}m{v}_{A}^{2}$-$\frac{1}{2}m{v}_{C}^{2}$£¬¸ù¾ÝÍòÓÐÒýÁ¦³äµ±ÏòÐÄÁ¦ÖªG$\frac{Mm}{{a}^{2}}$=m$\frac{{v}_{A}^{2}}{ka}$£¬GM$\frac{m}{{b}^{2}}$=m$\frac{{v}_{C}^{2}}{ka}$£¬ÁªÁ¢½âµÃÍòÓÐÒýÁ¦¶ÔËü×öµÄ¹¦W=$\frac{1}{2}$GMmk£¨$\frac{1}{a}$-$\frac{a}{{b}^{2}}$£©£¬¹ÊCÕýÈ·£¬B´íÎó£»
D¡¢ÉèBµ½Ì«ÑôµÄ¾àÀëΪx£¬Ôòx2=c2$+\frac{£¨b-a£©^{2}}{4}$£¬¸ù¾ÝÍòÓÐÒýÁ¦³äµ±ÏòÐÄÁ¦Öª$\frac{GMm}{{x}^{2}}$=ma£¬ÖªÚ¤ÍõÐÇÔÚBµãµÄ¼ÓËÙ¶ÈΪa=$\frac{4GM}{{{{£¨b-a£©}^2}+4{c^2}}}$£¬¹ÊDÕýÈ·£»
¹ÊÑ¡£ºACD
µãÆÀ ÕýÈ·Àí½â¿ªÆÕÀÕµÄÐÐÐÇÔ˶¯Èý¶¨ÂÉÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£¬»á¸ù¾Ý¹¦ÄܹØϵºÍÍòÓÐÒýÁ¦³äµ±ÏòÐÄÁ¦Çó½â¶¯Äܱ仯µÃÒýÁ¦×ö¹¦¶àÉÙ£®
A£® | µçÁ÷±íA1ºÍA2µÄʾÊýÏàͬ | B£® | µçÁ÷±íA2µÄʾÊý±ÈA3µÄС | ||
C£® | µçÁ÷±íA1µÄʾÊý±ÈA2µÄ´ó | D£® | µçÁ÷±íµÄʾÊý¶¼Ïàͬ |
A£® | ÔÚ¿ÆÀ¶ÙÕû¸ö²Ù×÷¹ý³ÌÖУ¬µçÁ÷¼Æ²»·¢Éúƫת | |
B£® | ½«´ÅÌúͶÈëÂÝÏß¹Ü˲¼ä£¬µçÁ÷¼Æ·¢Éúƫת£¬µ«¿ÆÀ¶ÙÅܹýÈ¥¹Û²ìʱ£¬µçÁ÷¼ÆÒѲ»ÔÙƫת | |
C£® | ¿ÆÀ¶ÙÎÞ·¨¹Û²ìµ½µçÁ÷¼ÆƫתµÄÔÒòÊǵ±Ê±µçÁ÷¼ÆÁéÃô¶È²»¹» | |
D£® | ¿ÆÀ¶ÙÎÞ·¨¹Û²ìµ½µçÁ÷¼ÆƫתµÄÔÒòÊǵ¼Ïß¹ý³¤£¬µçÁ÷¹ýС |
A£® | 25N£¬15N£¬40N | B£® | 10N£¬15N£¬20N | C£® | 10N£¬20N£¬40N | D£® | 2N£¬4N£¬6N |
A£® | µ±Á½ÎïÌå¼äµÄ¾àÀëСµ½½Ó½üÁãʱ£¬ËüÃÇÖ®¼äµÄÍòÓÐÒýÁ¦½«ÊÇÎÞÇî´ó | |
B£® | ÈôÖ»½«µÚÈý¸öÎïÌå·ÅÔÚ¼×ÒÒÁ½ÎïÌåÖ®¼ä£¬¼×ÒÒÖ®¼äµÄÍòÓÐÒýÁ¦»á¸Ä±ä | |
C£® | ¼×¶ÔÒÒµÄÍòÓÐÒýÁ¦µÄ´óСÓëÒÒ¶Ô¼×µÄÍòÓÐÒýÁ¦µÄ´óС×ÜÏàµÈ | |
D£® | Èôm1£¾m2£¬¼×¶ÔÒÒµÄÍòÓÐÒýÁ¦´óÓÚÒÒ¶Ô¼×µÄÍòÓÐÒýÁ¦ |
A£® | 0¡«t1ʱ¼äÄÚ£¬Ç£ÒýÁ¦Ôö´ó£¬¹¦Âʲ»±ä | |
B£® | 0¡«t1ʱ¼äÄÚ£¬Ç£ÒýÁ¦Îª×èÁ¦µÄ$\frac{{v}_{2}}{{v}_{1}}$±¶ | |
C£® | Èôv2=2v1£¬Ôò0¡«t1ʱ¼äÄÚ£¬Ç£ÒýÁ¦×öµÄ¹¦Îªmv12 | |
D£® | Èôt2=2t1£¬Ôòt1¡«t2ʱ¼äÄÚ£¬Ç£ÒýÁ¦×öµÄ¹¦Îªmv22£¨$\frac{{v}_{2}}{{v}_{2}-{v}_{1}}$£© |