题目内容

16.飞船沿半径为R的圆周绕地球运动其周期为T,地球半径为R0,如果飞船要返回地面,可在轨道上某点A处将速率降到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆于地球表面在B点相切(如图所示),已知地球表面的重力加速度为g0,求:
(1)飞船由A点到B点所需的时间;
(2)飞船沿椭圆轨道运行时经A点的加速度.

分析 根据开普勒第三定律,结合椭圆轨道半长轴的大小,求出飞船在椭圆轨道上的周期,从而求出飞船由A点到B点所需的时间.
根据万有引力的大小,结合万有引力等于重力,通过牛顿第二定律求出A点的加速度.

解答 解:(1)根据题意得椭圆轨道的半长轴r=$\frac{R+{R}_{0}}{2}$,
根据开普勒第三定律得,$\frac{{R}^{3}}{{T}^{2}}=\frac{{r}^{3}}{T{′}^{2}}$
解得T′=$\sqrt{(\frac{R+{R}_{0}}{2R})^{3}T}$,
则飞船由A点到B点的运动时间t=$\frac{T′}{2}$=$\frac{1}{2}$$\sqrt{(\frac{R+{R}_{0}}{2R})^{3}T}$.
(2)飞船在轨道A点所受的万有引力$F=\frac{GMm}{{R}^{2}}$,又$GM={g}_{0}{{R}_{0}}^{2}$,
根据牛顿第二定律得,加速度a=$\frac{F}{m}=\frac{GM}{{R}^{2}}=\frac{{g}_{0}{{R}_{0}}^{2}}{{R}^{2}}$.
答:(1)飞船由A点到B点所需的时间为$\frac{1}{2}$$\sqrt{(\frac{R+{R}_{0}}{2R})^{3}T}$;
(2)飞船沿椭圆轨道运行时经A点的加速度为$\frac{{g}_{0}{{R}_{0}}^{2}}{{R}^{2}}$.

点评 解决本题的关键知道飞船由A点到B点所需的时间应是椭圆轨道的半个周期.关键掌握开普勒第三定律,并能灵活运用.

练习册系列答案
相关题目
7.如图甲所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.

(1)实验中,直接测定小球碰撞前后的速度是不容易的,但是,可以通过仅测量C(填选项前的符 号),间接地解决这个问题.
A.小球开始释放高度h
B.小球抛出点距地面的高度H
C.小球做平抛运动的射程
(2)图甲中O点是小球抛出点在地面上的垂直投影.实验时,先让入射球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP.然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复,接下来要完成的必要步骤是ADE(填选项前的符号)
A.用天平测量两个小球的质量m1、m2
B.测量小球m1开始释放高度h
C.测量抛出点距地面的高度H
D.分别找到m1、m2相碰后平均落地点的位置M、N
E.测量平抛射程OM,ON
(3)若两球相碰前后的动量守恒,其表达式可表示为m1•OM+m2•ON=m1•OP(用(2)中测量的量表示).
(4)经测定,m1=45.0g,m2=7.5g,小球落地点的平均位置距O点的距离如图乙所示,碰撞前、后m1的动量分别为P1和P1′,则P1:P1′=14:11;若碰撞结束是的m2动量为P2′,则P1′:P2′=11:2.9,实验结果说明,碰撞前、后总动量的比值$\frac{{p}_{1}}{{p}_{1}′+{p}_{2}′}$为1.01.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网