ÌâÄ¿ÄÚÈÝ
£¨1£©Èçͼ1Ëùʾ£¬ABCΪһ¹Ì¶¨ÔÚÊúֱƽÃæÄڵĹ⻬¹ìµÀ£¬BC¶Îˮƽ£¬AB¶ÎÓëBC¶Îƽ»¬Á¬½Ó£®ÖÊÁ¿Îªm1µÄСÇò´Ó¸ßλh´¦Óɾ²Ö¹¿ªÊ¼ÑعìµÀÏ»¬£¬Óë¾²Ö¹ÔÚ¹ìµÀBC¶ÎÉÏÖÊÁ¿Îªm2µÄСÇò·¢ÉúÅöײ£¬ÅöײºóÁ½ÇòµÄÔ˶¯·½Ïò´¦ÓÚͬһˮƽÏßÉÏ£¬ÇÒÔÚÅöײ¹ý³ÌÖÐÎÞ»úеÄÜËðʧ£®ÇóÅöײºóСÇòm2µÄËٶȴóСv2£»
£¨2£©Åöײ¹ý³ÌÖеÄÄÜÁ¿´«µÝ¹æÂÉÔÚÎÝÀïѧÖÐÓÐ׏㷺µÄÓ¦Óã®ÎªÁË̽¾¿ÕâÒ»¹æÂÉ£¬ÎÒÃDzÅÓöàÇòÒÀ´ÎÅöײ¡¢ÅöײǰºóËÙ¶ÈÔÚͬһֱÏßÉÏ¡¢ÇÒÎÞ»úеÄÜËðʧµÄ¼ò»¯Á¦Ñ§Ä£ÐÍ£®Èçͼ2Ëùʾ£¬Ôڹ̶¨¹â»¬Ë®Æ½¹ìµÀÉÏ£¬ÖÊÁ¿·Ö±ðΪm1¡¢m2¡¢m3¡mn-1¡¢mn¡µÄÈô¸É¸öÇòÑØÖ±Ïß¾²Ö¹Ïà¼äÅÅÁУ¬¸øµÚ1¸öÇò³õÄÜEk1£¬´Ó¶øÒýÆð¸÷ÇòµÄÒÀ´ÎÅöײ£®¶¨ÒåÆäÖеÚn¸öÇò¾¹ýÒÀ´ÎÅöײºó»ñµÃµÄ¶¯ÄÜEkÓëEk1Ö®±ÈΪµÚ1¸öÇò¶ÔµÚn¸öÇòµÄ¶¯ÄÜ´«µÝϵÊýk1n£®
a£®Çók1n£»
b£®Èôm1=4m0£¬mk=m0£¬m0Ϊȷ¶¨µÄÒÑÖªÁ¿£®Çóm2ΪºÎֵʱ£¬k1nÖµ×î´ó
£¨2£©Åöײ¹ý³ÌÖеÄÄÜÁ¿´«µÝ¹æÂÉÔÚÎÝÀïѧÖÐÓÐ׏㷺µÄÓ¦Óã®ÎªÁË̽¾¿ÕâÒ»¹æÂÉ£¬ÎÒÃDzÅÓöàÇòÒÀ´ÎÅöײ¡¢ÅöײǰºóËÙ¶ÈÔÚͬһֱÏßÉÏ¡¢ÇÒÎÞ»úеÄÜËðʧµÄ¼ò»¯Á¦Ñ§Ä£ÐÍ£®Èçͼ2Ëùʾ£¬Ôڹ̶¨¹â»¬Ë®Æ½¹ìµÀÉÏ£¬ÖÊÁ¿·Ö±ðΪm1¡¢m2¡¢m3¡mn-1¡¢mn¡µÄÈô¸É¸öÇòÑØÖ±Ïß¾²Ö¹Ïà¼äÅÅÁУ¬¸øµÚ1¸öÇò³õÄÜEk1£¬´Ó¶øÒýÆð¸÷ÇòµÄÒÀ´ÎÅöײ£®¶¨ÒåÆäÖеÚn¸öÇò¾¹ýÒÀ´ÎÅöײºó»ñµÃµÄ¶¯ÄÜEkÓëEk1Ö®±ÈΪµÚ1¸öÇò¶ÔµÚn¸öÇòµÄ¶¯ÄÜ´«µÝϵÊýk1n£®
a£®Çók1n£»
b£®Èôm1=4m0£¬mk=m0£¬m0Ϊȷ¶¨µÄÒÑÖªÁ¿£®Çóm2ΪºÎֵʱ£¬k1nÖµ×î´ó
£¨1£©ÉèÅöײǰµÄËÙ¶ÈΪ
£¬¸ù¾Ý»úеÄÜÊغ㶨ÂÉ m1gh=
m1
¢Ù
ÉèÅöײºóm1Óëm2µÄËٶȷֱðΪv1ºÍv2£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ m1v10=m1v1+m2v2 ¢Ú
ÓÉÓÚÅöײ¹ý³ÌÖÐÎÞ»úеÄÜËðʧ
m1
=
m1
+
m2
¢Û
¢Ú¡¢¢ÛʽÁªÁ¢½âµÃv2=
¢Ü
½«¢Ù´úÈëµÃ¢Üv2=
£®
£¨2£©a£®ÓÉ¢Üʽ£¬¿¼Âǵ½ EK1=
m1V102
EK2=
m2V22 µÃ
¸ù¾Ý¶¯ÄÜ´«µÝϵÊýµÄ¶¨Ò壬¶ÔÓÚ1¡¢2Á½Çò k12=
=
¢Ý
ͬÀí¿ÉµÃ£¬Çòm2ºÍÇòm3Åöײºó£¬¶¯ÄÜ´«µÝϵÊýk13ӦΪ k13=
=
?
=
?
¢Þ
ÒÀ´ËÀàÍÆ£¬¿ÉÒÔ¹éÄɵóö£¬¶¯ÄÜ´«µÝϵÊýk1nӦΪ k1n=
=
?
¡
=
?
¡
£¬
¼´ k1n=
£®
b£®½«m1=4m0£¬m3=mo´úÈë¢Þʽ¿ÉµÃ k13=64m02[
]2
Ϊʹk13×î´ó£¬Ö»Ðèʹ
=
×î´ó£¬¼´m2+
È¡×îСֵ£¬
ÓÉ
µ±
=
£¬¼´m2=2m0ʱ£¬k13×î´ó£®
´ð£º£¨1£©ÅöײºóСÇòm2µÄËٶȴóСv2=
£»
£¨2£©µ±m2=2m0 ʱ£¬k13Öµ×î´ó£®
V | 210 |
1 |
2 |
v | 210 |
ÉèÅöײºóm1Óëm2µÄËٶȷֱðΪv1ºÍv2£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ m1v10=m1v1+m2v2 ¢Ú
ÓÉÓÚÅöײ¹ý³ÌÖÐÎÞ»úеÄÜËðʧ
1 |
2 |
v | 210 |
1 |
2 |
v | 21 |
1 |
2 |
v | 22 |
¢Ú¡¢¢ÛʽÁªÁ¢½âµÃv2=
2m1v10 |
m1+m2 |
½«¢Ù´úÈëµÃ¢Üv2=
2m1
| ||
m1+m2 |
£¨2£©a£®ÓÉ¢Üʽ£¬¿¼Âǵ½ EK1=
1 |
2 |
EK2=
1 |
2 |
¸ù¾Ý¶¯ÄÜ´«µÝϵÊýµÄ¶¨Ò壬¶ÔÓÚ1¡¢2Á½Çò k12=
Ek2 |
Ek1 |
4m1m2 |
(m1+m2)2 |
ͬÀí¿ÉµÃ£¬Çòm2ºÍÇòm3Åöײºó£¬¶¯ÄÜ´«µÝϵÊýk13ӦΪ k13=
Ek3 |
Ek1 |
Ek2 |
Ek1 |
Ek3 |
Ek2 |
4m1m2 |
(m1+m2)2 |
4m2m3 |
(m2+m3)2 |
ÒÀ´ËÀàÍÆ£¬¿ÉÒÔ¹éÄɵóö£¬¶¯ÄÜ´«µÝϵÊýk1nӦΪ k1n=
Ekn |
Ek1 |
Ek2 |
Ek1 |
Ek3 |
Ek2 |
Ekn |
Ek(n-1) |
4m1m2 |
(m1+ m2)2 |
4m2m3 |
(m2+ m3)2 |
4m(n-1)mn |
(m(n-1)+ mn)2 |
¼´ k1n=
4n-1m1
| ||||||
(m1+m2)2(m2+m3)2¡(mn-1+mn)2 |
b£®½«m1=4m0£¬m3=mo´úÈë¢Þʽ¿ÉµÃ k13=64m02[
m2 |
(4m0+m2)(m0+m2) |
Ϊʹk13×î´ó£¬Ö»Ðèʹ
m2 |
(4mo+m2)(m2+m0) |
1 | ||
4
|
4
| ||
m2 |
ÓÉ
|
m2 |
2m0 | ||
|
´ð£º£¨1£©ÅöײºóСÇòm2µÄËٶȴóСv2=
2m1
| ||
m1+m2 |
£¨2£©µ±m2=2m0 ʱ£¬k13Öµ×î´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿