题目内容

开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即
a2
T2
=K,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你证明太阳系中该常量的表达式为(已知引力常量为G,太阳的质量为M):k=
G
4π2
M
因行星绕太阳做匀速圆周运动,于是轨道半长轴a即为轨道半径r,根据万有引力定律和牛顿第二定律有
G
mM
r2
=m(
T
)2r

得:
r3
T2
=K=
GM
4π2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网