题目内容

【题目】用一根细线一端系一可视为质点的小球,另一端固定在一光滑锥顶上,如图所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为T,则T随ω2变化的图象是( )

A.
B.
C.
D.

【答案】C
【解析】解:设绳长为L,锥面与竖直方向夹角为θ,当ω=0时,小球静止,受重力mg、支持力N和绳的拉力T而平衡,T=mgcosθ≠0,所以A项、B项都不正确;
ω增大时,T增大,N减小,当N=0时,角速度为ω0
当ω<ω0时,由牛顿第二定律得,
Tsinθ﹣Ncosθ=mω2Lsinθ,
Tcosθ+Nsinθ=mg,
解得T=mω2Lsin2θ+mgcosθ;
当ω>ω0时,小球离开锥子,绳与竖直方向夹角变大,设为β,由牛顿第二定律得
Tsinβ=mω2Lsinβ,
所以T=mLω2
可知T﹣ω2图线的斜率变大,所以C项正确,D错误.
故选:C.
【考点精析】认真审题,首先需要了解匀速圆周运动(匀速圆周运动线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动),还要掌握向心力(向心力总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小;向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网