ÌâÄ¿ÄÚÈÝ
£¨2013?»ÝÖÝһģ£©ÈçͼËùʾ£¬ÊúÖ±·ÅÖõĹ⻬ƽÐнðÊôµ¼¹ìMN¡¢PQÏà¾àL£¬ÔÚMµãºÍPµã¼ä½ÓÓÐÒ»¸ö×èֵΪRµÄµç×裬ÔÚÁ½µ¼¹ì¼äµÄ¾ØÐÎÇøÓòOO1O1¡äO¡äÄÚÓд¹Ö±µ¼¹ìƽÃæÏòÀï¡¢¿íΪdµÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈΪB£®Ò»ÖÊÁ¿Îªm¡¢µç×èΪrµÄµ¼Ìå°ôab´¹Ö±µØ¸éÔÚµ¼¹ìÉÏ£¬Óë´Å³¡µÄÉϱ߽çÏà¾àd0£®ÏÖʹab°ôÓɾ²Ö¹¿ªÊ¼ÊÍ·Å£¬°ôabÔÚÀ뿪´Å³¡Ç°ÒѾ×öÔÈËÙÖ±ÏßÔ˶¯£¨°ôabÓëµ¼¹ìʼÖÕ±£³ÖÁ¼ºÃ½Ó´¥ÇÒÏÂÂä¹ý³ÌÖÐʼÖÕ±£³Öˮƽ£¬µ¼¹ìµÄµç×è²»¼Æ£©£®
£¨1£©Çó°ôabÀ뿪´Å³¡µÄϱ߽çʱµÄËٶȴóС£®
£¨2£©Çó°ôabÔÚͨ¹ý´Å³¡ÇøµÄ¹ý³ÌÖвúÉúµÄ½¹¶úÈÈ£®
£¨3£©ÊÔ·ÖÎöÌÖÂÛ°ôabÔڴų¡ÖпÉÄܳöÏÖµÄÔ˶¯Çé¿ö£®
£¨1£©Çó°ôabÀ뿪´Å³¡µÄϱ߽çʱµÄËٶȴóС£®
£¨2£©Çó°ôabÔÚͨ¹ý´Å³¡ÇøµÄ¹ý³ÌÖвúÉúµÄ½¹¶úÈÈ£®
£¨3£©ÊÔ·ÖÎöÌÖÂÛ°ôabÔڴų¡ÖпÉÄܳöÏÖµÄÔ˶¯Çé¿ö£®
·ÖÎö£º£¨1£©µ¼Ìå°ô×öÔÈËÙÖ±ÏßÔ˶¯£¬´¦ÓÚƽºâ״̬£¬ÓÉ°²ÅàÁ¦¹«Ê½¼°Æ½ºâÌõ¼þ¿ÉÒÔÇó³ö°ôÀ뿪ϱ߽çʱµÄËٶȣ®
£¨2£©ÓÉÄÜÁ¿Êغ㶨ÂÉ¿ÉÒÔÇó³ö½ðÊô°ô²úÉúµÄ½¹¶úÈÈ£®
£¨3£©¸ù¾Ý°ô½øÈë´Å³¡Ê±µÄËٶȴóС£¬ÌÖÂÛ°ôÔڴų¡ÖеÄÔ˶¯Çé¿ö£®
£¨2£©ÓÉÄÜÁ¿Êغ㶨ÂÉ¿ÉÒÔÇó³ö½ðÊô°ô²úÉúµÄ½¹¶úÈÈ£®
£¨3£©¸ù¾Ý°ô½øÈë´Å³¡Ê±µÄËٶȴóС£¬ÌÖÂÛ°ôÔڴų¡ÖеÄÔ˶¯Çé¿ö£®
½â´ð£º½â£º£¨1£©µ¼Ìå°ôÇиî´Å¸ÐÏß²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆE=BLv£¬
µç·ÖеĸÐÓ¦µçÁ÷I=
£¬
µ¼Ìå°ô×öÔÈËÙÖ±ÏßÔ˶¯£¬ÓÉƽºâÌõ¼þµÃ£º
mg-BIL=0£¬½âµÃv=
£»
£¨2£©ÉèÕû¸öµç·²úÉúµÄ½¹¶úÈÈÊÇQ£¬
ÓÉÄÜÁ¿Êغ㶨Âɿɵãºmg£¨d0+d£©=Q+
mv2£¬
Qab=
Q£¬½âµÃ£ºQab=
[mg£¨d0+d£©-
]£»
£¨3£©Éèµ¼Ìå°ô¸Õ½øÈë´Å³¡Ê±µÄËÙ¶ÈΪv0£¬
Óɶ¯Äܶ¨Âɿɵãºmgd0=
mv02£¬½âµÃ£ºv0=
£»
µ¼Ìå°ôÔڴų¡ÖÐ×öÔÈËÙÔ˶¯Ê±µÄËÙ¶Èv=
£¬
¢Ùµ±v=v0£¬¼´d0=
ʱ£¬°ô½øÈë´Å³¡ºó×öÔÈËÙÖ±ÏßÔ˶¯£»
¢Úµ±v£¼v0£¬d0£¼
ʱ£¬°ô½øÈë´Å³¡ºóÏÈ×ö¼ÓËÙÔ˶¯£¬ºó×öÔÈËÙÔ˶¯£»
¢Ûµ±v£¾v0£¬d0£¾
ʱ£¬°ô½øÈë´Å³¡ºóÏÈ×ö¼õËÙÔ˶¯£¬ºó×öÔÈËÙÔ˶¯£»
´ð£º£¨1£©°ôabÀ뿪´Å³¡µÄϱ߽çʱµÄËÙ¶ÈΪ
£®
£¨2£©°ôabÔÚͨ¹ý´Å³¡ÇøµÄ¹ý³ÌÖвúÉúµÄ½¹¶úÈÈΪ
[mg£¨d0+d£©-
]£®
£¨3£©¢Ùµ±v=v0£¬¼´d0=
ʱ£¬°ô½øÈë´Å³¡ºó×öÔÈËÙÖ±ÏßÔ˶¯£»
¢Úµ±v£¼v0£¬d0£¼
ʱ£¬°ô½øÈë´Å³¡ºóÏÈ×ö¼ÓËÙÔ˶¯£¬ºó×öÔÈËÙÔ˶¯£»
¢Ûµ±v£¾v0£¬d0£¾
ʱ£¬°ô½øÈë´Å³¡ºóÏÈ×ö¼õËÙÔ˶¯£¬ºó×öÔÈËÙÔ˶¯£®
µç·ÖеĸÐÓ¦µçÁ÷I=
E |
r+R |
µ¼Ìå°ô×öÔÈËÙÖ±ÏßÔ˶¯£¬ÓÉƽºâÌõ¼þµÃ£º
mg-BIL=0£¬½âµÃv=
mg(R+r) |
B2L2 |
£¨2£©ÉèÕû¸öµç·²úÉúµÄ½¹¶úÈÈÊÇQ£¬
ÓÉÄÜÁ¿Êغ㶨Âɿɵãºmg£¨d0+d£©=Q+
1 |
2 |
Qab=
r |
r+R |
r |
r+R |
m3g2(R+r)2 |
2B4L4 |
£¨3£©Éèµ¼Ìå°ô¸Õ½øÈë´Å³¡Ê±µÄËÙ¶ÈΪv0£¬
Óɶ¯Äܶ¨Âɿɵãºmgd0=
1 |
2 |
2gd0 |
µ¼Ìå°ôÔڴų¡ÖÐ×öÔÈËÙÔ˶¯Ê±µÄËÙ¶Èv=
mg(R+r) |
B2L2 |
¢Ùµ±v=v0£¬¼´d0=
m2g(R+r)2 |
2B4L4 |
¢Úµ±v£¼v0£¬d0£¼
m2g(R+r)2 |
2B4L4 |
¢Ûµ±v£¾v0£¬d0£¾
m2g(R+r)2 |
2B4L4 |
´ð£º£¨1£©°ôabÀ뿪´Å³¡µÄϱ߽çʱµÄËÙ¶ÈΪ
mg(R+r) |
B2L2 |
£¨2£©°ôabÔÚͨ¹ý´Å³¡ÇøµÄ¹ý³ÌÖвúÉúµÄ½¹¶úÈÈΪ
r |
r+R |
m3g2(R+r)2 |
2B4L4 |
£¨3£©¢Ùµ±v=v0£¬¼´d0=
m2g(R+r)2 |
2B4L4 |
¢Úµ±v£¼v0£¬d0£¼
m2g(R+r)2 |
2B4L4 |
¢Ûµ±v£¾v0£¬d0£¾
m2g(R+r)2 |
2B4L4 |
µãÆÀ£º±¾Ìâ×îºóÒ»ÎÊÊDZ¾ÌâµÄÄѵ㣬¸ù¾Ý°ô½øÈë´Å³¡Ê±µÄËٶȽøÐзÖÎöÌÖÂÛÊÇÕýÈ·½âÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿