题目内容

【题目】如图所示,球半径为R的玻璃球冠的底面镀银,底面的半径为R,在过球心O且垂直于底面的平面(纸面)内,有一与底面垂直的光线射到玻璃球冠上的M点,该光线的延长线恰好过底面边缘上的A点,经M点折射后的光线照射到底面的N点上,且BN=MN,已知光在真空中的传播速度为c. 求:

①玻璃球冠的折射率;

②该光线在玻璃球冠的传播时间(不考虑光在玻璃球冠中的多次反射)。

【答案】

【解析】

1)光路图如图所示:

由几何关系得,OAM为等边三角形,即BOM为一条直线,所以在M点入射角i=600。又BN=MN,所以在M点折射角r=300.

由折射定律得

解得

2)由几何关系可得,在N点反射后的光线过O点垂直BM从球冠的Q点射出

改光线在球冠中的路径

n=c/v

传播时间t=s/v.

解得

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网