ÌâÄ¿ÄÚÈÝ
¼×ÎïÌåÒÔËÙ¶ÈvÔÈËÙͨ¹ýÖ±ÏßÉϵÄA¡¢BÁ½µã£¬ÓÃʱΪt£®ÒÒÎïÌå´ÓAµã¾²Ö¹³ö·¢£¬×ö¼ÓËٶȴóСΪa1µÄÔȼÓËÙÖ±ÏßÔ˶¯£¬µ½´ïijһ×î´óËÙ¶Èvm£¬½Ó×Å×ö¼ÓËٶȴóСΪa2µÄÔȼõËÙÖ±ÏßÔ˶¯£¬µ½BµãÍ£Ö¹£¬ÓÃʱҲΪt£®Ôò¹ØÓÚÒÒÎïÌåµÄÔ˶¯£¬ÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÎÞÂÛa1¡¢a2ΪºÎÖµ£¬×î´óËÙ¶Èvm=2v | ||||||
B£®×î´óËÙ¶Èvm¿ÉΪÐí¶àÖµ£¬Óëa1¡¢a2µÄ´óСÓÐ¹Ø | ||||||
C£®¼ÓËÙ¶Èa1¡¢a2Öµ±ØÐëÊÇÒ»¶¨µÄ | ||||||
D£®¼ÓËÙ¶Èa1¡¢a2±ØÐëÂú×ã
|
A¡¢µ±ÎïÌåÔÈËÙͨ¹ýA¡¢BÁ½µãʱ£¬x=vt£®µ±ÎïÌåÏÈÔȼÓËÙºóÔȼõËÙͨ¹ýA¡¢BÁ½µãʱ£¬¸ù¾Ýƽ¾ùËٶȹ«Ê½£¬×ÜλÒÆx=
t1+
t2=
t£¬½âµÃvm=2v£¬Óëa1¡¢a2Î޹أ®¹ÊAÕýÈ·£¬B´íÎó£®
C¡¢ÔȼÓËÙÔ˶¯µÄʱ¼äºÍÔȼõËÙÔ˶¯µÄʱ¼äÖ®ºÍt=
+
=
+
£¬ÕûÀíµÃ£¬
+
=
£®¹ÊC´íÎó£¬DÕýÈ·£®
¹ÊÑ¡£ºAD£®
vm |
2 |
vm |
2 |
vm |
2 |
C¡¢ÔȼÓËÙÔ˶¯µÄʱ¼äºÍÔȼõËÙÔ˶¯µÄʱ¼äÖ®ºÍt=
vm |
a1 |
vm |
a2 |
2v |
a1 |
2v |
a2 |
1 |
a1 |
1 |
a2 |
t |
2v |
¹ÊÑ¡£ºAD£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿