题目内容
【题目】如图所示,在光滑的水平面上放置一个长为L=2.2m的木板B,在B的左端放有一个可视为质点的小滑块A,A、B间的动摩擦因数μ=0.2,二者的质量均为m=1kg,g=10m/s2.现对A施加F=6N的水平向右的拉力,ls后撤去拉力F,求:
(1)撤去拉力F时小滑块A和长木板B的速度大小;
(2)A相对于B静止的位置与长木板右端的距离。
【答案】(1) vA=4m/s,vB=2m/s (2)d=0.7m
【解析】
(1)对A滑块根据牛顿第二定律有:
F-μmg=maA
代入数据解得:
1s时滑块A的速度为:
vA=aAt=4×1m/s=4m/s
对B木板有:
μmg=maB
代入数据解得:
则1s时B的速度为:
vB=aBt=2m/s
(2)撤去F前,A的位移为:
B的位移为:
对AB,在撤去F之后到相对静止过程中,根据动量守恒定律有:
mvA+mvB=2mv共
根据能量守恒定律有:
代入数据解得:
x相对=0.5m
则A最终到右端的距离为:
d=L-(xA-xB)-x相对
代入数据得:
d=0.7m
练习册系列答案
相关题目