题目内容
【题目】如图所示,质量为1kg物块自高台上A点以4m/s的速度水平抛出后,刚好在B点沿切线方向进入半径为0.5m的光滑圆弧轨道运动.到达圆弧轨道最底端C点后沿粗糙的水平面运动4.3m到达D点停下来,已知OB与水平面的夹角θ=53°,g=10m/s2(sin 53°=0.8,cos 53°=0.6).求:
(1)到达B点的速度vB;
(2)物块到达C点时,物块对轨道的压力;
(3)物块与水平面间的动摩擦因数.
【答案】
(1)
解:小物块恰好从B端沿切线方向进入轨道,据几何关系有:
vB= =
m/s=5 m/s.
(2)
解:小物块由B运动到C,据动能定理有:
在C点处,据牛顿第二定律有:
解得FN=96 N
根据牛顿第三定律,小物块经过圆弧轨道上C点时对轨道的压力FN′的大小为96 N.
(3)
解:小物块从C运动到D,据功能关系有:
联立得:μ=0.5.
【解析】(1)小物块恰好从B端沿切线方向进入轨道,据几何关系求到达B点的速度vB;(2)小物块由B运动到C,据动能定理求C的速度,再根据据牛顿第二定律求弹力;(3)小物块从C运动到D,据功能关系求μ.

练习册系列答案
相关题目