题目内容

6.如图,倾角为θ的绝缘斜面长为L,A、B、C、D、E是斜面上的5个点,AB=BC=CD=DE,在A、E两点处分别固定带电量为+Q的点电荷.有一带电量为+q质量为m的小物块可看作质点,从B处由静止释放后恰好能运动至D处,则(  )
A.小物块与斜面间的动摩擦因数为μ=tanθ
B.小物块在C处的加速度为gsinθ
C.小物块从B到D的过程中电势能增加了$\frac{1}{4}$mgLsinθ
D.小物块在C处的速度最大

分析 明确等量同种电荷间的电场线的分布图,知道BD两点为等势面,从B到D由动能定理即可判断摩擦因数,电势能的变化及速度的变化

解答 解:A、有等量同种电荷的电场线分布图可知,BD为等势面,故从B到D电场力不做功,由动能定理可得mg•2Lsinθ-μmg•2Lcosθ=0,解得μ=tanθ,故A正确;
B、C出场强为零,故在C处,mgsinθ-μmgcosθ=ma,解得a=0,故B错误;
C、BD为等势面,故从B到D电场力不做功,电势能不变,故C错误;
D、通过受力分析可知,小物体先加速后减速,当加速度减小到零时,速度达到最大,故在C点速度最大,故D正确;
故选:AD

点评 本题主要考查了等量同种电荷产生的电场线分布图及等势面分布图,再结合牛顿第二定律即可

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网