ÌâÄ¿ÄÚÈÝ
6£®ÈçͼËùʾ£¬Ö±ÏßMNÏ·½Î޴ų¡£¬ÉÏ·½¿Õ¼ä´æÔÚÁ½¸öÔÈÇ¿´Å³¡£¬Æä·Ö½çÏßÊǰ뾶ΪRµÄ°ëÔ²£¬Á½²àµÄ´Å³¡·½ÏòÏà·´ÇÒ´¹Ö±ÓÚÖ½Ã棬´Å¸ÐӦǿ¶È´óС¶¼ÎªB£®ÏÖÓÐÒ»ÖÊÁ¿Îªm¡¢µçºÉÁ¿ÎªqµÄ´ø¸ºµç΢Á£´ÓPµãÑذ뾶·½ÏòÏò×ó²àÉä³ö£¬×îÖÕ´òµ½Qµã£¬²»¼Æ΢Á£µÄÖØÁ¦£®Ç󣺣¨1£©Î¢Á£Ôڴų¡ÖÐÔ˶¯µÄÖÜÆÚ£»
£¨2£©´ÓPµã¾¹ý±ß½çÒ»´Îµ½Qµã£¬Î¢Á£µÄÔ˶¯ËٶȴóС¼°Ô˶¯Ê±¼ä£»
£¨3£©ÈôÏòÀï´Å³¡ÊÇÓнçµÄ£¬·Ö²¼ÔÚÒÔOµãΪԲÐÄ¡¢°ë¾¶ÎªRºÍ2RµÄÁ½°ëÔ²Ö®¼äµÄÇøÓò£¬ÉÏÊö΢Á£ÈÔ´ÓPµãÑذ뾶·½ÏòÏò×ó²àÉä³ö£¬ÇÒ΢Á£ÈÔÄܵ½´ïQµã£¬ÇóÆäËٶȵÄ×î´óÖµ£®
·ÖÎö £¨1£©Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÁ£×ÓµÄËٶȣ¬È»ºóÇó³öÖÜÆÚ£®
£¨2£©×÷³öËÙ¶È×î´óʱÁ£×ÓµÄÔ˶¯¹ì¼££¬È»ºóÇó³öÁ£×ӵĹìµÀ°ë¾¶£¬ÔÙÇó³öÁ£×ÓµÄËÙ¶ÈÓëÔ˶¯Ê±¼ä£®
£¨3£©¸ù¾ÝÌâÒâ×÷³öÁ£×Ó¿ÉÄܵÄÔ˶¯¹ì¼££¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÓëÊýѧ֪ʶ·ÖÎöµÃ³öÁ£×ÓÔ˶¯µÄ¿ÉÄܵÄÇé¿ö£¬È»ºóÓɼ¸ºÎ֪ʶ·ÖÎö¹ì¼£°ë¾¶µÄ×î´óÖµ£¬Óɰ뾶¹«Ê½Çó³öËٶȵÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯£¬ÂåÂØ×ÈÁ¦ÌṩÏòÐÄÁ¦£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº$B{v_0}q=m\frac{v_0^2}{r}$£¬ÖÜÆÚ£º$T=\frac{2¦Ðr}{v_0}$£¬ÔòÖÜÆÚ£º$T=\frac{2¦Ðm}{Bq}$£»
£¨2£©Á£×Ó×öÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶£ºr=$\frac{mv}{qB}$£¬Á£×ÓËÙ¶ÈÔ½´ó£¬Á£×Ó¹ìµÀ°ë¾¶Ô½´ó£¬
Á£×ÓËÙ¶È×î´óʱ£¬´ÓPµã¾¹ý±ß½çÒ»´Îµ½Qµã£¬Á£×ÓµÄÔ˶¯¹ì¼£ÈçͼËùʾ£º
Óɼ¸ºÎ֪ʶ¿ÉÖª£¬Á£×Ó¹ìµÀ°ë¾¶£ºr=R£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqvB=m$\frac{{v}^{2}}{r}$£¬
½âµÃ£¬Á£×Ó×î´óËٶȣºv=$\frac{qBR}{m}$£¬
Á£×Ó×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ£º$T=\frac{2¦Ðm}{Bq}$£¬
Á£×ÓµÄÔ˶¯Ê±¼ä£ºt=t1+t2=$\frac{3}{4}$T+$\frac{1}{4}$T=$\frac{2¦Ðm}{qB}$£»
£¨3£©Á£×ÓµÄÔ˶¯¹ì¼£½«´Å³¡±ß½ç·Ö³ÉnµÈ·Ý£¨n=2£¬3£¬4£¬£®£®£©
ÉèÿµÈ·ÝÔ²»¡Ëù¶ÔÔ²ÐĽÇΪ2¦È£¬
Óɼ¸ºÎ֪ʶ¿ÉµÃ¦È=$\frac{¦Ð}{2n}$£¬tan¦È=$\frac{r}{R}$£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºqv0B=m$\frac{{v}_{0}^{2}}{r}$£¬
½âµÃ£ºv0=$\frac{qBR}{m}$tan$\frac{¦Ð}{2n}$£¨n=2¡¢3¡¢4¡¢¡£©£¬
µ±nΪżÊýʱ£¬ÓɶԳÆÐԿɵÃt=$\frac{nT}{2}$=$\frac{n¦Ðm}{qB}$£¨n=2¡¢4¡¢6¡¢8¡£©
µ±nΪÆæÊýʱ£®tΪÖÜÆÚµÄÕûÊý±¶¼ÓÉϵÚÒ»¶ÎµÄÔ˶¯Ê±¼ä£¬
¼´t=$\frac{n-1}{2}$T+$\frac{¦Ð+\frac{¦Ð}{n}}{2¦Ð}$T=$\frac{£¨{n}^{2}+1£©¦Ðm}{nqB}$£¨n=3¡¢5¡¢7¡£©£¬
ÉèxΪOµ½Á£×ÓÔ˶¯¹ì¼£µÄÔ²ÐĵľàÀ룬
Óɼ¸ºÎ֪ʶµÃ£ºr=Rtan$\frac{¦Ð}{2n}$£¬x=$\frac{R}{cos\frac{¦Ð}{2n}}$£¬
Òª²»³¬³ö±ß½çÐëÓУº$\frac{R}{cos\frac{¦Ð}{2n}}$+Rtan$\frac{¦Ð}{2n}$£¼2R£¬
½âµÃ£º2cos$\frac{¦Ð}{2n}$£¾1+sin$\frac{¦Ð}{2n}$£¬
µ±n=2ʱ²»³ÉÁ¢£¬Èçͼ£¨b£©Ëùʾ
±È½Ïµ±n=3¡¢n=4ʱµÄÔ˶¯°ë¾¶£¬¿ÉÖª£ºµ±n=3ʱ£¬Ô˶¯°ë¾¶×î´ó£¬Á£×ÓµÄËÙ¶È×î´ó£®¼´ÓÐ
r=Rtan$\frac{¦Ð}{2n}$=$\frac{\sqrt{3}}{3}$R=$\frac{m{v}_{0}}{qB}$£¬¿ÉµÃ£ºv0=$\frac{\sqrt{3}qBR}{3m}$£»
´ð£º£¨1£©´øµçÁ£×ÓÔڴų¡ÖÐ×÷Ô²ÖÜÔ˶¯µÄÖÜÆÚΪ$\frac{2¦Ðm}{qB}$£®
£¨2£©´ÓPµã¾¹ý±ß½çÒ»´Îµ½Qµã£¬Î¢Á£µÄÔ˶¯ËٶȴóСÊÇ$\frac{qBR}{m}$£¬Ô˶¯Ê±¼äÊÇ$\frac{2¦Ðm}{qB}$£»
£¨3£©ÉÏÊö΢Á£ÈÔ´ÓPµãÑذ뾶·½ÏòÏò×ó²àÉä³ö£¬ÇÒ΢Á£ÈÔÄܵ½´ïQµã£¬ÆäËٶȵÄ×î´óֵΪ$\frac{\sqrt{3}qBR}{3m}$£®
µãÆÀ ±¾Ì⿼²éÁËÁ£×ÓÔڴų¡ÖеÄÔ˶¯£¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÕýÈ·½âÌ⣬¸ù¾ÝÌâÒâ×÷³öÁ£×ÓÔ˶¯¹ì¼££¬½áºÏÌâÒâÕÒ³öÏàÓ¦µÄÁÙ½çÌõ¼þÊÇÕýÈ·½âÌâµÄÇ°ÌáÓë¹Ø¼ü£®
A£® | µç¶¯»úÁ½¶ËµçѹΪIR | |
B£® | ÔÏßȦÖеĵçÁ÷ΪnI | |
C£® | µç¶¯»úÏûºÄµÄµç¹¦ÂÊΪ$\frac{{U}_{0}I}{n}$ | |
D£® | ÖØÎïÔÈËÙÉÏÉýµÄËÙ¶ÈΪ$\frac{I£¨{U}_{0}-\sqrt{2}nIR£©}{\sqrt{2}nmg}$ |
£¨¡¡¡¡£©
A£® | ÈôÀë×ÓÊøÊÇͬλËØ£¬ÔòxԽС£¬Àë×ÓÖÊÁ¿Ô½´ó | |
B£® | ÈôÀë×ÓÊøÊÇͬλËØ£¬ÔòxԽС£¬Àë×ÓÖÊÁ¿Ô½Ð¡ | |
C£® | Ö»ÒªxÏàͬ£¬ÔòÀë×ÓÖÊÁ¿Ò»¶¨Ïàͬ | |
D£® | xÔ½´ó£¬ÔòÀë×ӵıȺÉÒ»¶¨Ô½´ó |
A£® | СÇòµÄÉÏÉýʱ¼ä´óÓÚÏÂÂäʱ¼ä | |
B£® | СÇòÅ׳öËÙÂÊ´óÓÚÂäµØËÙÂÊ | |
C£® | СÇòÉÏÉý¹ý³Ì¼ÓËٶȵÈÓÚÏÂÂä¹ý³Ì¼ÓËÙ¶È | |
D£® | СÇòÉÏÉý¹ý³Ìƽ¾ù¹¦ÂÊСÓÚÏÂÂä¹ý³Ìƽ¾ù¹¦ÂÊ |
A£® | µçÁ÷±í²âµÄÊǵçÁ÷µÄ×î´óÖµ | |
B£® | µçѹ±í²âµÄÊǸÐÓ¦µç¶¯ÊƵÄÓÐЧֵ | |
C£® | ¸ÐÓ¦µç¶¯ÊƵÄ˲ʱֵ±í´ïʽΪe=NBS¦Øsin¦Øt | |
D£® | PÏòÉÏÒƶ¯Ê±µçÁ÷±íʾÊý±ä´ó |
A£® | ÏßȦÖдÅͨÁ¿±ä»¯Ô½´ó£¬ÏßȦÖвúÉúµÄ¸ÐÓ¦µç¶¯ÊÆÒ»¶¨Ô½´ó | |
B£® | ÏßȦÖдÅͨÁ¿Ô½´ó£¬ÏßȦÖвúµÄ¸ÐÓ¦µç¶¯ÊÆÒ»¶¨Ô½´ó | |
C£® | ÏßȦ·ÅÔڴų¡Ô½Ç¿µÄλÖã¬ÏßȦÖвúÉúµÄ¸ÐÓ¦µç¶¯ÊÆÒ»¶¨Ô½´ó | |
D£® | ÏßȦÖдÅͨÁ¿±ä»¯Ô½¿ì£¬ÏßȦÖвúÉúµÄ¸ÐÓ¦µç¶¯ÊÆÔ½´ó |