ÌâÄ¿ÄÚÈÝ
ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬µÚ¢ñÏóÏÞ´æÔÚÑØyÖáÕý·½ÏòµÄÔÈÇ¿µç³¡£¬³¡Ç¿´óСΪE£®µÚ¢ó¡¢µÚ¢ôÏóÏÞ-d¡Üy¡Ü0ÄÚ´æÔÚ´¹Ö±ÓÚ×ø±êƽÃæÏòÄÚµÄÔÈÇ¿´Å³¡£®Ò»ÖÊÁ¿Îªm¡¢µçºÉÁ¿Îª-qµÄ´ø¸ºµçµÄÁ£×Ó´ÓyÖáÉϵÄMµãÒÔËٶȦÔ0´¹Ö±ÓÚyÖáÉäÈëµç³¡£¬¾xÖáÉϵÄNµãÓëxÖáÕý·½Ïò³É¦È=60¡ã½ÇÉäÈë´Å³¡£¬Ç¡ºÃ²»»á´Ó´Å³¡µÄϱ߽çÉä³ö´Å³¡£¬ÈçͼËùʾ£®²»¼ÆÁ£×ÓµÄÖØÁ¦£¬Çó
£¨1£©M¡¢NÁ½µã¼äµÄµçÊƲîU£»
£¨2£©´Å³¡µÄ´Å¸ÐӦǿ¶È´óСB£»
£¨3£©Á£×Ó´ÓMµãÔ˶¯µ½µÚÒ»´ÎÀ뿪´Å³¡µÄ×Üʱ¼ät£®
£¨1£©M¡¢NÁ½µã¼äµÄµçÊƲîU£»
£¨2£©´Å³¡µÄ´Å¸ÐӦǿ¶È´óСB£»
£¨3£©Á£×Ó´ÓMµãÔ˶¯µ½µÚÒ»´ÎÀ뿪´Å³¡µÄ×Üʱ¼ät£®
·ÖÎö£º£¨1£©Á£×ÓÔÚµÚÒ»ÏóÏ޵ĵ糡ÖÐ×öÀàƽÅ×Ô˶¯£¬Óɶ¯Äܶ¨Àí¿ÉÒÔÇó³öM¡¢NÁ½µã¼äµÄµçÊƲ
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬×÷³öÁ£×ÓµÄÔ˶¯¹ì¼££¬ÓÉÊýѧ֪ʶÇó³öÁ£×ӵĹìµÀ°ë¾¶£»
ÂåÂ××ÈÁ¦ÌṩÁ£×Ó×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÒÔÇó³ö´Å¸ÐӦǿ¶È£®
£¨3£©Çó³öÁ£×ÓÔڴų¡ÖеÄÔ˶¯Ê±¼ä£¬Çó³öÁ£×ÓÔڵ糡ÖÐ×öÀàƽÅ×Ô˶¯µÄʱ¼ä£¬È»ºóÇó³öÁ£×Ó×ܵÄÔ˶¯Ê±¼ä£®
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬×÷³öÁ£×ÓµÄÔ˶¯¹ì¼££¬ÓÉÊýѧ֪ʶÇó³öÁ£×ӵĹìµÀ°ë¾¶£»
ÂåÂ××ÈÁ¦ÌṩÁ£×Ó×öÔ²ÖÜÔ˶¯µÄÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÒÔÇó³ö´Å¸ÐӦǿ¶È£®
£¨3£©Çó³öÁ£×ÓÔڴų¡ÖеÄÔ˶¯Ê±¼ä£¬Çó³öÁ£×ÓÔڵ糡ÖÐ×öÀàƽÅ×Ô˶¯µÄʱ¼ä£¬È»ºóÇó³öÁ£×Ó×ܵÄÔ˶¯Ê±¼ä£®
½â´ð£º½â£º£¨1£©Á£×ÓÀ뿪µÚÒ»ÏóÏ޵ĵ糡ʱ£¬Á£×ÓËÙ¶Èv=
=2v0£¬
µç×ÓÔڵ糡ÖÐ×öÀàƽÅ×Ô˶¯£¬
Óɶ¯Äܶ¨ÀíµÃ£ºqU=
m¦Ô2-
m
£¬
½âµÃ£ºU=
£»
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Ô˶¯¹ì¼£ÈçͼËùʾ£¬
ÓÉÊýѧ֪ʶ¿ÉµÃ£ºrsin30¡ã+r=d£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqBv=m
£¬
½âµÃ£ºB=
£»
£¨3£©Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ£ºT=
=
£¬
ÓÉÁ£×ÓÔڴų¡ÖеÄÔ˶¯¹ì¼££¬ÓÉÊýѧ֪ʶ¿ÉµÃ£¬Á£×Óת¹ýµÄÔ²ÐĽÇΪ240¡ã£¬
Á£×ÓÔڴų¡ÖеÄÔ˶¯Ê±¼ä£ºt2=
T£¬
Á£×ÓÀ뿪µç³¡Ê±ÊúÖ±·½ÏòµÄ·ÖËÙ¶Èvy=vsin60¡ã=
v0£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºa=
£¬
ÓÉÔȱäËÙÔ˶¯µÄËٶȹ«Ê½£ºvy=at1£¬
½âµÃ£¬Á£×ÓµÄÔ˶¯×Üʱ¼ä£ºt=t1+t2=
+
£»
´ð£º£¨1£©M¡¢NÁ½µã¼äµÄµçÊƲîΪ
£»
£¨2£©´Å³¡µÄ´Å¸ÐӦǿ¶È´óСΪ
£»
£¨3£©Á£×Ó´ÓMµãÔ˶¯µ½µÚÒ»´ÎÀ뿪´Å³¡µÄ×Üʱ¼äΪ
+
£®
v0 |
cos60¡ã |
µç×ÓÔڵ糡ÖÐ×öÀàƽÅ×Ô˶¯£¬
Óɶ¯Äܶ¨ÀíµÃ£ºqU=
1 |
2 |
1 |
2 |
¦Ô | 2 0 |
½âµÃ£ºU=
3m
| ||
2q |
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬Ô˶¯¹ì¼£ÈçͼËùʾ£¬
ÓÉÊýѧ֪ʶ¿ÉµÃ£ºrsin30¡ã+r=d£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqBv=m
v2 |
r |
½âµÃ£ºB=
3m¦Ô0 |
qd |
£¨3£©Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ£ºT=
2¦Ðr |
qB |
2¦Ðm |
qB |
ÓÉÁ£×ÓÔڴų¡ÖеÄÔ˶¯¹ì¼££¬ÓÉÊýѧ֪ʶ¿ÉµÃ£¬Á£×Óת¹ýµÄÔ²ÐĽÇΪ240¡ã£¬
Á£×ÓÔڴų¡ÖеÄÔ˶¯Ê±¼ä£ºt2=
240 |
360 |
Á£×ÓÀ뿪µç³¡Ê±ÊúÖ±·½ÏòµÄ·ÖËÙ¶Èvy=vsin60¡ã=
3 |
ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãºa=
qE |
m |
ÓÉÔȱäËÙÔ˶¯µÄËٶȹ«Ê½£ºvy=at1£¬
½âµÃ£¬Á£×ÓµÄÔ˶¯×Üʱ¼ä£ºt=t1+t2=
| ||
qE |
4¦Ðm |
3qB |
´ð£º£¨1£©M¡¢NÁ½µã¼äµÄµçÊƲîΪ
3m
| ||
2q |
£¨2£©´Å³¡µÄ´Å¸ÐӦǿ¶È´óСΪ
3mv0 |
qd |
£¨3£©Á£×Ó´ÓMµãÔ˶¯µ½µÚÒ»´ÎÀ뿪´Å³¡µÄ×Üʱ¼äΪ
| ||
qE |
4¦Ðm |
3qB |
µãÆÀ£º±¾ÌâÊÇ´øµçÁ£×ÓÔڵ糡¡¢´Å³¡ÖÐÔ˶¯µÄ×ÛºÏÌ⣬¸ù¾ÝÌâÒâ×÷³öÁ£×ÓµÄÔ˶¯¹ì¼££®Ó¦ÓÃÊýѧ֪ʶÇó³öÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ¹ìµÀ°ë¾¶¡¢Á£×Óת¹ýµÄÔ²ÐĽǣ¬ÊDZ¾ÌâµÄÄѵ㣬ҲÊÇÕýÈ·½âÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿