ÌâÄ¿ÄÚÈÝ
15£®ÔÚµØÃæÉÏ·½£¬Ò»Ð¡Ô²»·AÌ×ÔÚÒ»Ìõ¾ùÔÈÖ±¸ËBÉÏ£¬AºÍBµÄÖÊÁ¿¾ùΪm£¬ÈôËüÃÇÖ®¼ä·¢ÉúÏà¶Ô»¬¶¯Ê±£¬»á²úÉúf=0.5mgµÄĦ²ÁÁ¦£®¿ªÊ¼Ê±A´¦ÓÚBµÄ×î϶ˣ¬BÊúÖ±·ÅÖã¬ÔÚAµÄÏ·½h=0.2m´¦£¬´æÔÚÒ»¸ö¡°Ï໥×÷Óá±ÇøÓòC£¬ÇøÓòCµÄ¸ß¶Èd=0.30m£¬¹Ì¶¨ÔÚ¿ÕÖÐÈçͼÖл®ÓÐÐéÏߵIJ¿·Ö£¬µ±A½øÈëÇøÓòCʱ£¬A¾ÍÊܵ½·½ÏòÏòÉϵĺãÁ¦F×÷Óã®F=2mg£¬ÇøÓòC¶Ô¸ËB²»²úÉú×÷ÓÃÁ¦£®AºÍBÒ»ÆðÓɾ²Ö¹¿ªÊ¼ÏÂÂ䣬ÒÑÖª¸ËBÂäµØʱAºÍBµÄËÙ¶ÈÏàͬ£®²»¼Æ¿ÕÆø×èÁ¦£¬ÖØÁ¦¼ÓËÙ¶Èg=10m/s2£®Ç󣺣¨1£©AÔÚÏ໥×÷ÓÃÇøÓòÄÚ£¬A¡¢BµÄ¼ÓËٶȣ¿
£¨2£©A¸ÕÀ뿪×÷ÓÃÇøÓòʱ£¬A¡¢BµÄËٶȣ¿
£¨3£©¸ËBµÄ³¤¶ÈLÖÁÉÙӦΪ¶àÉÙ£¿
·ÖÎö £¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ·Ö±ðÇó³öÔÚÏ໥×÷ÓÃÇøÓòÄÚ£¬A¡¢BµÄ¼ÓËٶȴóС£®
£¨2£©¸ù¾ÝËÙ¶ÈλÒƹ«Ê½Çó³öÏÂÂähʱµÄËٶȣ¬¸ù¾ÝËÙ¶ÈλÒƹ«Ê½Çó³öAÀ뿪Ï໥×÷ÓÃÇøÓòʱµÄËٶȣ¬½áºÏËÙ¶Èʱ¼ä¹«Ê½Çó³öAÔÚÏ໥×÷ÓÃÇøÓòÄÚµÄʱ¼ä£¬´Ó¶ø½áºÏËÙ¶Èʱ¼ä¹«Ê½Çó³öBµÄËٶȣ®
£¨3£©ÔÚÏ໥×÷ÓÃÇøÓò£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â³öÁ½¸öÎïÌåµÄ¼ÓËٶȣ¬¸ù¾ÝλÒÆʱ¼ä¹Øϵ¹«Ê½ºÍËÙ¶Èʱ¼ä¹Øϵ¹«Ê½Çó½â³öÀ뿪Ï໥×÷ÓÃÇøÓòµÄʱ¼äºÍËٶȣ¬µÃµ½Ïà¶ÔλÒÆ£»´ËºóÔٴθù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó½â³öÁ½¸öÎïÌåµÄ¼ÓËٶȣ¬¸ù¾ÝλÒÆʱ¼ä¹Øϵ¹«Ê½ºÍËÙ¶Èʱ¼ä¹Øϵ¹«Ê½Çó½â³ö×îÖÕͬËÙʱµÄÏà¶ÔλÒÆ£»×îºó¼ÓÉÏÁ½¸öÏà¶ÔλÒƼ´¿É£®
½â´ð ½â£º£¨1£©ÒÔAΪÑо¿¶ÔÏóÓУºF-mg-f=maA
´úÈëÊý¾Ý½âµÃ£ºaA=5m/s2
·½ÏòÊúÖ±ÏòÉÏ£®
ÒÔBΪÑо¿¶ÔÏó£ºmg-f=maB
´úÈëÊý¾Ý½âµÃaB=5m/s2£¬·½ÏòÊúÖ±ÏòÏ£®
£¨2£©ÏÂÂähʱËÙ¶ÈΪV0£¬ÔòÓУºV0=$\sqrt{2gh}$=$\sqrt{2¡Á10¡Á0.2}$m/s=2m/s
¸ù¾ÝVA2=V02-2aAd ´úÈëÊý¾Ý½âµÃ£ºVA=1m/s
t1=$\frac{{{V_0}-{V_A}}}{a_A}$=$\frac{2-1}{5}s$=$\frac{1}{5}$s
ÔòVB=V0+aBt1=$2+5¡Á\frac{1}{5}$m/s=3m/s
£¨3£©BÔÚt1ÄÚÏÂÂä¸ß¶ÈΪhB£ºhB=$\frac{{{V_0}+{V_B}}}{2}{t_1}$=$\frac{2+3}{2}¡Á\frac{1}{5}$m=0.5m
ËùÒÔ AÏà¶ÔBµÄλÒÆΪ£º¡÷x1=hB-d=0.5-0.3m=0.2m
A³ö×÷ÓÃÇøÓòºó£º¼ÓËÙ¶Èa¡äA=$\frac{mg+f}{m}$=15m/s2
BµÄ¼ÓËٶȲ»±ä£¬µ±ËÙ¶ÈÏàͬʱ£ºÓÐVA+aA¡ät2=VB+aBt2
´úÈëÊý¾Ý½âµÃt2=0.2s
ÏàͬËÙ¶ÈΪ£ºV=VA+a¡äAt2=1+15¡Á0.2m/s=4m/s
ÔÚt2ʱ¼äÄÚ£ºhA¡ä=$\frac{{{V_A}+V}}{2}{t_2}$=$\frac{1+4}{2}¡Á0.2m$=0.5m
hB¡ä=$\frac{{{V_B}+V}}{2}{t_2}$=$\frac{3+4}{2}¡Á0.2$m=0.7m
AÏà¶ÔBµÄλÒÆΪ£º¡÷x2=hB¡ä-hA¡ä=0.2m
¼´¸ËµÄ³¤¶ÈL=¡÷x1+¡÷x2=0.4m
´ð£º£¨1£©AÔÚÏ໥×÷ÓÃÇøÓòÄÚ£¬A¡¢BµÄ¼ÓËٶȷֱðΪ5m/s2¡¢·½ÏòÏòÉÏ£¬5m/s2£¬·½ÏòÏòÏ£®
£¨2£©A¸ÕÀ뿪×÷ÓÃÇøÓòʱ£¬A¡¢BµÄËٶȷֱðΪ1m/s¡¢3m/s£®
£¨3£©¸ËBµÄ³¤¶ÈLÖÁÉÙӦΪ0.4m£®
µãÆÀ ±¾ÌâÊ×ÏÈÒª¸ù¾ÝÁ½ÎïÌåµÄÊÜÁ¦Çé¿ö£¬·ÖÎöÔ˶¯Çé¿ö£¬Æä´ÎÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½½â¾öÔȱäËÙÖ±ÏßÔ˶¯£¬Òª×¢ÒâÑ°ÕÒÁ½ÎïÌåÖ®¼äµÄ¹Øϵ£¬±ÈÈçËÙ¶ÈÏàͬ£¬Ô˶¯µÄͬʱÐԵȣ®
A£® | µÈÊÆÃæºÍµç³¡Ïß´¦´¦´¹Ö±£¬µÈÊÆÏßµÄÊèÃÜ¿ÉÒÔ·´Ó³µç³¡Ç¿¶ÈµÄÇ¿Èõ | |
B£® | ͬһµÈÊÆÃæÉϵĵ㳡ǿ´óС±Ø¶¨´¦´¦ÏàµÈ | |
C£® | µçºÉ´Óµç³¡ÖÐÒ»µãÒƵ½ÁíÒ»µã£¬µç³¡Á¦²»×ö¹¦£¬µçºÉ±ØÔÚͬһµÈÊÆÃæÉÏÒƶ¯ | |
D£® | ¸ºµçºÉËùÊܵ糡Á¦µÄ·½Ïò±ØºÍ¸ÃµãµÈÊÆÃæ´¹Ö±£¬²¢Ö¸ÏòµçÊÆÉý¸ßµÄ·½Ïò |
A£® | PËùÊÜÀÁ¦µÄÊ©Á¦ÎïÌåÊǹ³ÂëQ£¬´óСµÈÓÚmg | |
B£® | PËùÊÜÀÁ¦µÄÊ©Á¦ÎïÌåÊÇÉþ×Ó£¬´óСµÈÓÚmg | |
C£® | PËùÊÜĦ²ÁÁ¦µÄ·½ÏòˮƽÏò×󣬴óСһ¶¨Ð¡ÓÚmg | |
D£® | PËùÊÜĦ²ÁÁ¦µÄ·½ÏòˮƽÏò×󣬴óСһ¶¨´óÓÚmg |
A£® | $\frac{{U}_{¼×}}{{U}_{ÒÒ}}$=1 | B£® | $\frac{{U}_{¼×}}{{U}_{ÒÒ}}$=$\frac{\sqrt{2}}{2}$ | C£® | $\frac{{U}_{¼×}}{{U}_{ÒÒ}}$=$\sqrt{2}$ | D£® | $\frac{{U}_{¼×}}{{U}_{ÒÒ}}$=2 |