ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬°ëÔ²ÓнçÔÈÇ¿´Å³¡µÄÔ²ÐÄO1ÔÚxÖáÉÏ£¬OO1¾àÀëµÈÓÚ°ëÔ²´Å³¡µÄ°ë¾¶£¬´Å¸ÐӦǿ¶È´óСΪB1£®ÐéÏßMNƽÐÐxÖáÇÒÓë°ëÔ²ÏàÇÐÓÚPµã£®ÔÚMNÉÏ·½ÊÇÕý½»µÄÔÈÇ¿µç³¡ºÍÔÈÇ¿´Å³¡£¬µç³¡³¡Ç¿´óСΪE£¬·½ÏòÑØxÖḺÏò£¬´Å³¡´Å¸ÐӦǿ¶È´óСΪB2£®B1¡¢B2·½Ïò¾ù´¹Ö±Ö½Ã棬·½ÏòÈçͼËùʾ£®ÓÐһȺÏàͬµÄÕýÁ£×Ó£¬ÒÔÏàͬµÄËÙÂÊÑز»Í¬·½Ïò´ÓÔµãOÉäÈëµÚIÏóÏÞ£¬ÆäÖÐÑØxÖáÕý·½Ïò½øÈë´Å³¡µÄÁ£×Ó¾¹ýPµãÉäÈëMNºó£¬Ç¡ºÃÔÚÕý½»µÄµç´Å³¡ÖÐ×öÖ±ÏßÔ˶¯£¬Á£×ÓÖÊÁ¿Îªm£¬µçºÉÁ¿Îªq£¨Á£×ÓÖØÁ¦²»¼Æ£©£®Çó£º
£¨1£©Á£×Ó³õËٶȴóСºÍÓнç°ëÔ²´Å³¡µÄ°ë¾¶£®
£¨2£©Èô³·È¥´Å³¡B2£¬Ôò¾¹ýPµãÉäÈëµç³¡µÄÁ£×Ó´ÓyÖá³öµç³¡Ê±µÄ×ø±ê£®
£¨3£©Èô³·È¥´Å³¡B2£¬ÉèÁ£×Ó½øÈë´Å³¡µÄ³õËÙ¶ÈÓëxÖáµÄ¼Ð½ÇΪ¦È£¬ÊÔд³öÁ£×Ó´òµ½yÖáÉϵÄ×ø±êÓë¦ÈµÄ¹Øϵʽ£®
£¨1£©Á£×Ó³õËٶȴóСºÍÓнç°ëÔ²´Å³¡µÄ°ë¾¶£®
£¨2£©Èô³·È¥´Å³¡B2£¬Ôò¾¹ýPµãÉäÈëµç³¡µÄÁ£×Ó´ÓyÖá³öµç³¡Ê±µÄ×ø±ê£®
£¨3£©Èô³·È¥´Å³¡B2£¬ÉèÁ£×Ó½øÈë´Å³¡µÄ³õËÙ¶ÈÓëxÖáµÄ¼Ð½ÇΪ¦È£¬ÊÔд³öÁ£×Ó´òµ½yÖáÉϵÄ×ø±êÓë¦ÈµÄ¹Øϵʽ£®
£¨1£©ÔÚMNÉÏ·½£¬Á£×Ó×öÔÈËÙÖ±ÏßÔ˶¯£¬ÂåÂ××ÈÁ¦Óëµç³¡Á¦Æ½ºâ£¬¹Êqv0B2=Eq£»
½âµÃ£ºv0=
ÓÉÌâÒâÖªÁ£×ÓÔڴų¡B1ÖÐÔ²ÖÜÔ˶¯°ë¾¶Óë¸Ã´Å³¡°ë¾¶Ïàͬ£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓÐ
qv0B1=m
½âµÃR=
=
£¨2£©Ôڵ糡ÖÐÁ£×Ó×öÀàƽÅ×Ô˶¯£º
x=R=
y=v0t=
=
¹Êy¡ä=y+R=
(
+
)
£¨3£©ÉèÁ£×Ó³öB1´Å³¡Óë°ëÔ²´Å³¡±ß½ç½»ÓÚQµã£¬ÈçͼËùʾ£¬
ÕÒ³ö¹ì¼£Ô²ÐÄ£¬¿ÉÒÔ¿´³öËıßÐÎOO1O2QËÄÌõ±ßµÈ³¤ÊÇƽÐÐËıßÐΣ¬ËùÒ԰뾶O2QÓëOO1ƽÐУ®´ÓQµã³ö´Å³¡ËÙ¶ÈÓëO2Q´¹Ö±£¬ËùÒÔ´¹Ö±½øÈëMN±ß½ç£®
Óɼ¸ºÎ¹Øϵ£ºxQ=R-Rsin¦È
Á£×ÓÔڵ糡ÖÐƫת£¬xQ=
at2y¡ä¡ä=R+v0t a=
½âÉÏʽµÃ£ºy¡ä¡ä=
+
´ð£º£¨1£©Á£×Ó³õËٶȴóСΪ£¬Óнç°ëÔ²´Å³¡µÄ°ë¾¶Îª
£»
£¨2£©Èô³·È¥´Å³¡B2£¬Ôò¾¹ýPµãÉäÈëµç³¡µÄÁ£×Ó´ÓyÖá³öµç³¡Ê±µÄ×ø±êΪ
(
+
)£»
£¨3£©Á£×Ó´òµ½yÖáÉϵÄ×ø±êÓë¦ÈµÄ¹ØϵʽΪy¡ä¡ä=
+
£®
½âµÃ£ºv0=
E |
B2 |
ÓÉÌâÒâÖªÁ£×ÓÔڴų¡B1ÖÐÔ²ÖÜÔ˶¯°ë¾¶Óë¸Ã´Å³¡°ë¾¶Ïàͬ£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓÐ
qv0B1=m
| ||
R |
mv0 |
qB1 |
mE |
qB1B2 |
£¨2£©Ôڵ糡ÖÐÁ£×Ó×öÀàƽÅ×Ô˶¯£º
x=R=
Eqt2 |
2m |
y=v0t=
E |
B2 |
|
mE |
qB2 |
|
¹Êy¡ä=y+R=
mE |
qB2 |
|
1 |
B1 |
£¨3£©ÉèÁ£×Ó³öB1´Å³¡Óë°ëÔ²´Å³¡±ß½ç½»ÓÚQµã£¬ÈçͼËùʾ£¬
ÕÒ³ö¹ì¼£Ô²ÐÄ£¬¿ÉÒÔ¿´³öËıßÐÎOO1O2QËÄÌõ±ßµÈ³¤ÊÇƽÐÐËıßÐΣ¬ËùÒ԰뾶O2QÓëOO1ƽÐУ®´ÓQµã³ö´Å³¡ËÙ¶ÈÓëO2Q´¹Ö±£¬ËùÒÔ´¹Ö±½øÈëMN±ß½ç£®
Óɼ¸ºÎ¹Øϵ£ºxQ=R-Rsin¦È
Á£×ÓÔڵ糡ÖÐƫת£¬xQ=
1 |
2 |
qE |
m |
½âÉÏʽµÃ£ºy¡ä¡ä=
mE |
qB1B2 |
mE | ||
q
|
|
´ð£º£¨1£©Á£×Ó³õËٶȴóСΪ£¬Óнç°ëÔ²´Å³¡µÄ°ë¾¶Îª
mE |
qB1B2 |
£¨2£©Èô³·È¥´Å³¡B2£¬Ôò¾¹ýPµãÉäÈëµç³¡µÄÁ£×Ó´ÓyÖá³öµç³¡Ê±µÄ×ø±êΪ
mE |
qB2 |
|
1 |
B1 |
£¨3£©Á£×Ó´òµ½yÖáÉϵÄ×ø±êÓë¦ÈµÄ¹ØϵʽΪy¡ä¡ä=
mE |
qB1B2 |
mE | ||
q
|
|
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿