题目内容
【题目】如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所受拉力达到F=18N时就会被拉断.当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断.若此时小球距水平地面的高度h=5m,重力加速度g=10m/s2 , 求小球落地处到地面上P点的距离?(P点在悬点的正下方)
【答案】解:球摆到最低点时,由F﹣mg=m
解得小球经过最低点时的速度v= =2m/s,
小球平抛运动的时间t= =1s
所以小球落地处到地面上P点的距离x=vt=2m.
答:小球落地处到地面上P点的距离为2m.
【解析】小球摆到最低点时细线恰好被拉断,细线的拉力达到F=18N,由重力和拉力的合力提供向心力求出小球摆到最低点时的速度.细线被拉断后,小球做平抛运动,由高度h求出平抛运动的时间,再求解小球落地处到地面上P点的距离.
【考点精析】本题主要考查了平抛运动和向心力的相关知识点,需要掌握特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动;运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动;向心力总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小;向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力才能正确解答此题.
练习册系列答案
相关题目