题目内容
【题目】在水平地面上竖直固定一根内壁光滑的圆管,管的半径R=3.6m(管的内径大小可以忽略),管的出口A在圆心的正上方,入口B与圆心的连线与竖直方向成60°角,如图所示.现有一只质量m=1kg的小球(可视为质点)从某点P以一定的初速度水平抛出,恰好从管口B处沿切线方向飞入,小球到达A时恰好与管壁无作用力.取g=10m/s2.求:
(1)小球到达圆管最高点A时的速度大小;
(2)小球在管的最低点C时,管壁对小球的弹力大小;
(3)小球抛出点P到管口B的水平距离x.
【答案】(1)(2),方向竖直向上(3)
【解析】试题分析:(1)小球在最高时对管壁无作用力,由向心力公式可知
可得小球到达圆管最高点时的速度
(2)设最低点C的速度为v,小球从管的最低点到最高点A,由机械能守恒定律可知
,可得
在最低点,由向心力公式可知
可得
(2)设B点的速度为vB,由机械能守恒定律可知
可得
由平抛运动规律可知,小球做平抛运动过程的初速度
在B点时的竖直速度
由可知
由可知,小球的抛出点到管口B的水平距离m
练习册系列答案
相关题目