题目内容
【题目】某压力锅结构如图所示。盖好密封锅盖,将压力阀套在出气孔上,给压力锅加热,当锅内气体压强达到一定值时,气体就把压力阀顶起。假定在压力阀被顶起时,停止加热。
(1)若此时锅内气体的体积为V,摩尔体积为V0,阿伏加德罗常数为NA,写 出锅内气体分子数的估算表达式。
(2)假定在一次放气过程中,锅内气体对压力阀及外界做功1J,并向外界释放了2J的热量。锅内原有气体的内能如何变化?变化了多少?
(3)已知大气压强P随海拔高度H的变化满足P=P0(1-αH),其中常数α>0。结合气体定律定性分析在不同的海拔高度使用压力锅,当压力阀被顶起时锅内气体的温度有何不同。
【答案】(1)V/V0·NA(2)气体内能减少了3J;(3)阀门被顶起时锅内气体温度随着海拔高度的增加而降低
【解析】(1)设锅内气体分子数为n
n=V/V0·NA
(2)根据热力学第一定律
ΔE=W+Q=-3J
锅内气体内能减少,减少了3J
(3)由P=P0(1-αH)(其中α>0)知,随着海拔高度的增加,大气压强减小;
由P1=P+mg/S知,随着海拔高度的增加,阀门被顶起时锅内气体压强减小;
根据查理定律P1/T1=P2/T2
可知阀门被顶起时锅内气体温度随着海拔高度的增加而降低。
本题考查热力学第一定律和气体状态方程,由阿伏伽德罗常数可求得分子数,由热力学第一定律可求得第二问,分析两个状态的压强和温度,由查理定律求解第三问
练习册系列答案
相关题目