题目内容

6.如图所示,是一个透明圆柱体的横截面,其半径为R,折射率是$\sqrt{3}$,AB是一条直线,今有一束平行光沿着AB方向射向圆柱体,若一条入射光线经折射后恰好经过B点.
(1)画出经过B点的光线及从圆柱体射出后的传播路径;
(2)经过B点的入射光线在圆柱体中的长度是多少?

分析 (1)画出光路图,由折射定律得到入射角与折射角的关系.再画出光路图.
(2)由几何关系也得到入射角与折射角的关系,即可求出入射角与折射角,再根据几何知识求解即可.

解答 解:(1)根据几何关系和光路可逆性,画出光路如图所示.
(2)设光线P经C折射后过B点,根据折射定律有:
  n=$\frac{sinα}{sinβ}$=$\sqrt{3}$…①
在△OBC中,由几何关系得:α=2β…②
由①、②得:2cosβ=$\sqrt{3}$…③
可得:β=30°,α=60°…④
所以 CB=2Rcosβ=$\sqrt{3}$R…⑤
答:
(1)画出经过B点的光线及从圆柱体射出后的传播路径如图;
(2)经过B点的入射光线在圆柱体中的长度是$\sqrt{3}$R.

点评 对于几何光学问题,首先要正确作出光路图,其次要充分运用几何知识分析入射角与折射角的关系,再根据折射定律进行解题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网