ÌâÄ¿ÄÚÈÝ
14£®Ì½Ô¹¤³ÌÈýÆÚ·ÉÐÐÊÔÑéÆ÷ÓÚ2014Äê10ÔÂ24ÈÕ2ʱÔÚÖйúÎ÷²ýÎÀÐÇ·¢ÉäÖÐÐÄ·¢ÉäÉý¿Õ£¬×îÖÕ½øÈë¾àÔÂÇò±íÃæ¸ßΪhµÄÔ²Ðι¤×÷¹ìµÀ£¬ÉèÔÂÇò°ë¾¶ÎªR£¬ÔÂÇò±íÃæµÄÖØÁ¦ËÙ¶ÈΪg£¬ÍòÓÐÒýÁ¦³£Á¿ÎªG£¬ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©A£® | ·ÉÐÐÊÔÑéÆ÷ÔÚ¹¤×÷¹ìµÀÉϵļÓËÙ¶ÈΪ£¨$\frac{R}{R+h}$£©2g | |
B£® | ·ÉÐÐÊÔÑéÆ÷ÈÆÔÂÇòÔËÐеÄÖÜÆÚΪ2¦Ð$\sqrt{\frac{R}{g}}$ | |
C£® | ·ÉÐÐÊÔÑéÆ÷ÔÚ¹¤×÷¹ìµÀÉϵÄÈÆÐÐËÙ¶ÈΪ$\sqrt{g£¨R+h£©}$ | |
D£® | ÔÂÇòµÄƽ¾ùÃܶÈΪ$\frac{3g}{4¦ÐGR}$ |
·ÖÎö ¸ù¾ÝÍòÓÐÒýÁ¦ÓëÐÇÇò±íÃæÖØÁ¦ÏàµÈÁгöµÈʽ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵóö·ÉÐÐÊÔÑéÆ÷ÔÚ¹¤×÷¹ìµÀÉϵļÓËٶȣ»
·ÉÐÐÆ÷ÈÆÔÂÔËÐÐʱÍòÓÐÒýÁ¦ÌṩԲÖÜÔ˶¯ÏòÐÄÁ¦ÁгöµÈʽÇó½â£»
¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬ÍƵ¼³öÏßËÙ¶ÈÇó½â£»
¸ù¾ÝÃܶȶ¨ÒåÇó½â£®
½â´ð ½â£ºA¡¢¸ù¾ÝÍòÓÐÒýÁ¦ÓëÐÇÇò±íÃæÖØÁ¦ÏàµÈµÃ
mg=$\frac{GMm}{{R}^{2}}$
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
·ÉÐÐÊÔÑéÆ÷ÔÚ¹¤×÷¹ìµÀÉϵļÓËÙ¶Èa=$\frac{GM}{{r}^{2}}$=£¨$\frac{R}{R+h}$£©2g£¬¹ÊAÕýÈ·£»
B¡¢·ÉÐÐÆ÷ÈÆÔÂÔËÐÐʱÍòÓÐÒýÁ¦ÌṩԲÖÜÔ˶¯ÏòÐÄÁ¦ÓУº
$\frac{GMm}{{r}^{2}}$=m$\frac{{4¦Ð}^{2}}{{T}^{2}}$r£¬¿ÉµÃT=2¦Ð$\sqrt{\frac{{r}^{3}}{GM}}$=2¦Ð$\sqrt{\frac{{£¨R+h£©}^{3}}{{gR}^{2}}}$£¬¹ÊB´íÎó£»
C¡¢·ÉÐÐÆ÷¹¤×÷¹ìµÀÉϵÄÈÆÐÐËÙ¶ÈÂú×ã$\frac{GMm}{{£¨R+h£©}^{2}}$=m$\frac{{v}^{2}}{R+h}$
¼´v=$\sqrt{\frac{GM}{R+h}}$=$\sqrt{\frac{{gR}^{2}}{R+h}}$£¬¹ÊC´íÎó£»
D¡¢ÔÂÇòµÄÃÜ¶È ¦Ñ=$\frac{M}{\frac{4{¦ÐR}^{3}}{3}}$=$\frac{3g}{4¦ÐGR}$£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºAD£®
µãÆÀ ÍòÓÐÒýÁ¦ÌṩԲÖÜÔ˶¯ÏòÐÄÁ¦ºÍÍòÓÐÒýÁ¦ÓëÐÇÇò±íÃæÖØÁ¦ÏàµÈÊǽâ¾ö´ËÀàÎÊÌâµÄÖ÷ÒªÈëÊֵ㣬¹Ø¼üÊÇÕÆÎÕÏà¹Ø¹«Ê½¼°¹«Ê½±ä»»£®
A£® | ÕâÁв¨µÄ²¨³¤Îª¦Ë=2m | |
B£® | ÒÒͼ¿ÉÄÜÊÇͼ¼×ÖÐÖʵãQµÄÕñ¶¯Í¼Ïó | |
C£® | ÕâÁв¨µÄ´«²¥ËÙ¶ÈΪv=3m/s | |
D£® | ÕâÁв¨µÄ²¨Ô´ÆðÕñ·½ÏòΪÏòÏ |
A£® | ´ÓÉÏÍùÏ¿´£¬µ¼Ì廷˳ʱÕëÐýת£¬Í¬Ê±ÐüÏßÏò×óƫת | |
B£® | ´ÓÉÏÍùÏ¿´£¬µ¼Ìå»·ÄæʱÕëÐýת£¬Í¬Ê±ÐüÏßÏòÓÒƫת | |
C£® | µ¼Ìå»·²»Ðýת£¬ÐüÏßÏòÓÒƫת | |
D£® | µ¼Ìå»·²»Ðýת£¬ÐüÏßÏò×óƫת |
A£® | СÇòµ½´ïBµãʱµÄËٶȴóСΪ$\sqrt{2gR}$ | |
B£® | СÇòµ½´ïBµãʱµÄËٶȴóСΪ$\sqrt{gR}$ | |
C£® | СÇòÔÚ»¬¶¯¹ý³ÌÖеÄ×î´óËÙ¶ÈΪ$\sqrt{£¨\sqrt{5}-1£©gR}$ | |
D£® | СÇòÔÚ»¬¶¯¹ý³ÌÖеÄ×î´óËÙ¶ÈΪ$\sqrt{2gR}$ |