题目内容
【题目】如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出。 若砝码和纸板的质量分别为m1=0.5kg和m2=0.1kg,砝码与纸板间的动摩擦因数μ1=0.2,砝码与桌面、纸板与桌面间的动摩擦因数均为μ2=0.5。重力加速度g=10m/s2。
(1)要使纸板相对砝码运动,求所需拉力的大小范围;
(2)若开始时,砝码与纸板左端的距离d=1m,拉力F=4.4N。为确保砝码不掉下桌面,则开始时纸板左端与桌子右侧距离l至少多大?
【答案】(1)F>4.2N (2)l=2.4m
【解析】
(1)设纸板和砝码的加速度大小分别为a1、a2,根据牛顿第二定律,μ1m1g =m1a1,F-μ2(m1+m2)g-μ1m1g =m2a2,
为使纸板相对砝码运动,应有a1<a2
代入数据可得:F>4.2N
(2)由第一问可知,两者发生相对运动。
由μ1m1g =m1a1,F-μ2(m1+m2)g-μ1m1g =m2a2
可知:a1=2m/s2;a2=4m/s2,
由,,x2=x1+d,
可得t=1s;此时砝码速度v1=2m/s。
砝码滑下纸板后做减速运动由μ2m1g =m1a3 得:a3= 5m/s2
则l= x1+d+ v12/2 a3=2.4m
练习册系列答案
相关题目