题目内容

【题目】如图,水平面上的矩形箱子内有一倾角为θ的固定斜面,斜面上放一质量为m的光滑球,静止时,箱子顶部与球接触但无压力,箱子由静止开始向右做匀加速运动,然后该做加速度大小为a的匀减速运动直至静止,经过的总路程为s,运动过程中的最大速度为v

1求箱子加速阶段的加速度为a′

2若a>gtanθ,求减速阶段球受到箱子左壁和顶部的作用力

【答案】12macotθ﹣mg

【解析】

试题分析:1设加速度为a′,由匀变速直线运动的公式:

得:

解得:

2设小球不受车厢的作用力,应满足:Nsinθ=ma

Ncosθ=mg

解得:a=gtanθ

减速时加速度的方向向左,此加速度有斜面的支持力N与左壁支持力共同提供,当a>gtanθ 时,

左壁的支持力等于0,此时小球的受力如图,则:Nsinθ=ma

Ncosθ﹣F=mg

解得:F=macotθ﹣mg

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网