ÌâÄ¿ÄÚÈÝ
£¨2011?ÁÉÄþ¶þÄ££©£¨1£©ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ
A£®Ôں˵çÕ¾ÖÐÀûÓÃʯī¡¢ÖØ´óºÍÆÕͨˮÀ´¿ØÖÆÁ´Ê½·´Ó¦ËÙ¶È
B£®ÖеȴóСµÄºËµÄ±È½áºÏÄÜ×î´ó£¬Òò´ËÕâЩºËÊÇ×îÎȶ¨µÄ
C£®Ô×ÓµÄÄÜÁ¿ÊDz»Á¬ÐøµÄ£¬Ö»ÄÜȡһϵÁв»Á¬ÐøµÄÊý
D£®ÌìÈ»·ÅÉäÏÖÏóµÄ·¢ÏÖ½ÒʾÁËÔ×Ӻ˾ßÓи´ÔӵĽṹ
£¨2£©ÈçͼËùʾ£¬a¡¢bÁ½»¬¿éÖÊÁ¿·Ö±ðΪm1ºÍm2£¬m1£¼m2£¬²¢·Ö±ðÌ×ÔÚˮƽ¹â»¬µ¼¸ËÉÏ£¬abÖ®¼äÁ¬½ÓÇáÖʵ¯»É£¬µ¯»ÉµÄ×ÔÈ»³¤¶ÈÓëµ¼¸Ë¼ä¾àÀëÏàµÈ¾ùΪd£¬µ¼¸Ë×ã¹»³¤£¬¿ªÊ¼Ê±abÔÚͬһÊúÖ±ÏßÉÏ£¬ÇÒ´¦ÓÚ¾²Ö¹×´Ì¬£¬ÏÖ¸øbÒ»¸öˮƽ³åÁ¿I£¬×Դ˺ó£¬Çó£º
¢Ùa»¬¿éÄÜ´ïµ½µÄ×î´óËÙ¶ÈΪ¶àÉÙ£¿
¢ÚÁ½»¬¿é¼äÓÐ×î´ó¾àÀëʱ£¬»¬¿éaµÄËٶȴóСΪ¶àÉÙ£¿
BCD
BCD
£¨ÌîÈëÕýÈ·Ñ¡ÏîÇ°µÄ×Öĸ£©A£®Ôں˵çÕ¾ÖÐÀûÓÃʯī¡¢ÖØ´óºÍÆÕͨˮÀ´¿ØÖÆÁ´Ê½·´Ó¦ËÙ¶È
B£®ÖеȴóСµÄºËµÄ±È½áºÏÄÜ×î´ó£¬Òò´ËÕâЩºËÊÇ×îÎȶ¨µÄ
C£®Ô×ÓµÄÄÜÁ¿ÊDz»Á¬ÐøµÄ£¬Ö»ÄÜȡһϵÁв»Á¬ÐøµÄÊý
D£®ÌìÈ»·ÅÉäÏÖÏóµÄ·¢ÏÖ½ÒʾÁËÔ×Ӻ˾ßÓи´ÔӵĽṹ
£¨2£©ÈçͼËùʾ£¬a¡¢bÁ½»¬¿éÖÊÁ¿·Ö±ðΪm1ºÍm2£¬m1£¼m2£¬²¢·Ö±ðÌ×ÔÚˮƽ¹â»¬µ¼¸ËÉÏ£¬abÖ®¼äÁ¬½ÓÇáÖʵ¯»É£¬µ¯»ÉµÄ×ÔÈ»³¤¶ÈÓëµ¼¸Ë¼ä¾àÀëÏàµÈ¾ùΪd£¬µ¼¸Ë×ã¹»³¤£¬¿ªÊ¼Ê±abÔÚͬһÊúÖ±ÏßÉÏ£¬ÇÒ´¦ÓÚ¾²Ö¹×´Ì¬£¬ÏÖ¸øbÒ»¸öˮƽ³åÁ¿I£¬×Դ˺ó£¬Çó£º
¢Ùa»¬¿éÄÜ´ïµ½µÄ×î´óËÙ¶ÈΪ¶àÉÙ£¿
¢ÚÁ½»¬¿é¼äÓÐ×î´ó¾àÀëʱ£¬»¬¿éaµÄËٶȴóСΪ¶àÉÙ£¿
·ÖÎö£º£¨1£©ÕýÈ·½â´ð±¾ÌâÐèÒªÕÆÎÕ£ººËµçÕ¾ÖÐÈçºÎ¿ØÖÆ·´Ó¦Ëٶȣ»±È½áºÏÄܵÄÎïÀíÒâÒ壬ÕýÈ·Àí½âÌìÈÈ·ÅÉäÏÖÏó£®
£¨2£©½â´ð±¾ÌâÐèÕÆÎÕ¢Ù¶¯Á¿¶¨Àí£ººÏÍâÁ¦µÄ³åÁ¿µÈÓÚÎïÌ嶯Á¿µÄ±ä»¯£»¢Úϵͳˮƽ·½Ïò²»ÊÜÍâÁ¦£¬ÔòϵͳÔÚˮƽ·½ÏòÉ϶¯Á¿Êغ㣬ϵͳµÄ»úеÄÜÊغ㣮
£¨2£©½â´ð±¾ÌâÐèÕÆÎÕ¢Ù¶¯Á¿¶¨Àí£ººÏÍâÁ¦µÄ³åÁ¿µÈÓÚÎïÌ嶯Á¿µÄ±ä»¯£»¢Úϵͳˮƽ·½Ïò²»ÊÜÍâÁ¦£¬ÔòϵͳÔÚˮƽ·½ÏòÉ϶¯Á¿Êغ㣬ϵͳµÄ»úеÄÜÊغ㣮
½â´ð£º½â£º£¨1£©A¡¢Ôں˵çÕ¾ÖУ¬Í¨¹ý¿ØÖÆ°ô£¨Ò»°ãÓÃʯī°ô£©ÎüÊÕÖÐ×Ó¶àÉÙÀ´¿ØÖÆ·´Ó¦Ëٶȣ¬¹ÊA´íÎó
B¡¢±È½áºÏÄÜÔ½´ó£¬±íʾÔ×ÓºËÖкË×Ó½áºÏµÃÔ½Àι̣¬Ô×ÓºËÔ½Îȶ¨£®ÖеȴóСµÄºËµÄ±È½áºÏÄÜ×î´ó£¬ËùÒÔÕâЩºËÊÇ×îÎȶ¨µÄ£¬¹ÊBÕýÈ·£»
C¡¢Ô×ÓµÄÄÜÁ¿ÊDz»Á¬ÐøµÄ£¬Ö»ÄÜȡһϵÁв»Á¬ÐøµÄÊý£¬¹ÊCÕýÈ·
D¡¢ÈËÃÇÈÏʶµ½Ô×ÓºËÓи´ÔӵĽṹÊÇ´ÓÌìÈ»·ÅÉäÏÖÏó¿ªÊ¼µÄ£¬¹ÊDÕýÈ·£»
¹ÊÑ¡BCD
£¨2£©¢Ù£ºµ¯»É»Ö¸´Ô³¤Ê±aµÄËÙ¶È×î´ó£¬Éè´ËËÙ¶ÈΪv1£¬´ËʱbµÄËÙ¶ÈΪv2
¸ù¾Ý¶¯Á¿¶¨Àí£¬¸ø»¬¿ébµÄÒ»¸ö³åÁ¿
I=m2v0-0
b»ñµÃ³åÁ¿ºó£¬a¡¢bµ¯»É×é³ÉµÄϵͳ¶¯Á¿ºÍ»úеÄܾùÊغ㣬ÔòµÃ£º
m2v0=m2v2+m1v1
=
+
½âµÃv1=
¢ÚÁ½»¬¿é¼äÓÐ×î´ó¾àÀëʱ£¬Á½»¬¿éµÄËÙ¶ÈÏàµÈ£¬Éè´ËʱËÙ¶ÈΪv
¸ù¾Ýϵͳ¶¯Á¿ÊغãµÃ
m2v0=£¨m2+m1£©v
v=
¹Ê´ð°¸Îª£º£¨1£©BCD
£¨2£©¢Ùa»¬¿éÄÜ´ïµ½µÄ×î´óËÙ¶ÈΪ
¢ÚÁ½»¬¿é¼äÓÐ×î´ó¾àÀëʱ£¬»¬¿éaµÄËٶȴóСΪ
£®
B¡¢±È½áºÏÄÜÔ½´ó£¬±íʾÔ×ÓºËÖкË×Ó½áºÏµÃÔ½Àι̣¬Ô×ÓºËÔ½Îȶ¨£®ÖеȴóСµÄºËµÄ±È½áºÏÄÜ×î´ó£¬ËùÒÔÕâЩºËÊÇ×îÎȶ¨µÄ£¬¹ÊBÕýÈ·£»
C¡¢Ô×ÓµÄÄÜÁ¿ÊDz»Á¬ÐøµÄ£¬Ö»ÄÜȡһϵÁв»Á¬ÐøµÄÊý£¬¹ÊCÕýÈ·
D¡¢ÈËÃÇÈÏʶµ½Ô×ÓºËÓи´ÔӵĽṹÊÇ´ÓÌìÈ»·ÅÉäÏÖÏó¿ªÊ¼µÄ£¬¹ÊDÕýÈ·£»
¹ÊÑ¡BCD
£¨2£©¢Ù£ºµ¯»É»Ö¸´Ô³¤Ê±aµÄËÙ¶È×î´ó£¬Éè´ËËÙ¶ÈΪv1£¬´ËʱbµÄËÙ¶ÈΪv2
¸ù¾Ý¶¯Á¿¶¨Àí£¬¸ø»¬¿ébµÄÒ»¸ö³åÁ¿
I=m2v0-0
b»ñµÃ³åÁ¿ºó£¬a¡¢bµ¯»É×é³ÉµÄϵͳ¶¯Á¿ºÍ»úеÄܾùÊغ㣬ÔòµÃ£º
m2v0=m2v2+m1v1
| 2 0 |
| 2 2 |
| 2 1 |
½âµÃv1=
2I |
m1+m2 |
¢ÚÁ½»¬¿é¼äÓÐ×î´ó¾àÀëʱ£¬Á½»¬¿éµÄËÙ¶ÈÏàµÈ£¬Éè´ËʱËÙ¶ÈΪv
¸ù¾Ýϵͳ¶¯Á¿ÊغãµÃ
m2v0=£¨m2+m1£©v
v=
I |
m1+m2 |
¹Ê´ð°¸Îª£º£¨1£©BCD
£¨2£©¢Ùa»¬¿éÄÜ´ïµ½µÄ×î´óËÙ¶ÈΪ
2I |
m1+m2 |
¢ÚÁ½»¬¿é¼äÓÐ×î´ó¾àÀëʱ£¬»¬¿éaµÄËٶȴóСΪ
I |
m1+m2 |
µãÆÀ£º±¾Ì⿼²éÁËÔ×ÓÎïÀíµÄ»ù´¡ÖªÊ¶£¬¶ÔÓÚÕâЩ»ù´¡ÖªÊ¶Òª¼ÓÇ¿¼ÇÒäºÍѵÁ·£¬ÒÔÌá¸ß¶ÔÓÚ»ù´¡ÖªÊ¶µÄÀí½â£®
Ó¦Óö¯Á¿Êغ㶨ÂɽâÌâҪעÒâ¡°ËÄÐÔ¡±£¬¢Ù¡¢ÏµÍ³ÐÔ£®¢Ú¡¢Ê¸Á¿ÐÔ£®¢Û¡¢Í¬Ê±ÐÔ£®¢Ü¡¢Í¬ÏµÐÔ£®
Ó¦Óö¯Á¿Êغ㶨ÂɽâÌâҪעÒâ¡°ËÄÐÔ¡±£¬¢Ù¡¢ÏµÍ³ÐÔ£®¢Ú¡¢Ê¸Á¿ÐÔ£®¢Û¡¢Í¬Ê±ÐÔ£®¢Ü¡¢Í¬ÏµÐÔ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿