题目内容
9.如图甲所示,某均匀介质中各质点的平衡位置在同一条直线上,相邻两点间距离为d.质点1开始振动时速度方向竖直向上,振动由此开始向右传播.经过时间t,前13个质点第一次形成如图乙所示的波形.则该波的周期与波长分别为( )A. | $\frac{2}{3}t$ 9d | B. | $\frac{2}{3}t$ 8d | C. | $\frac{t}{2}$ $\frac{26}{3}d$ | D. | $\frac{t}{2}$ 8d |
分析 本题的关键是根据波传播的周期性和振动传播的特点,画出波的图象(振动应传播到第17个质点),或从第13个质点此时的振动方向向下数到再经$\frac{T}{2}$才能振动方向向上,从而找出周期T与时间t的关系,然后即可求解.
解答 解:根据振动的周期性和波的传播特点可知,质点13此时的振动方向向下,而波源的起振方向向上,所以从质点13算起,需要再经$\frac{T}{2}$振动的方向才能向上,即与波源的起振方向相同,设周期为T,则t=$\frac{3}{2}$T+$\frac{T}{2}$=2T,即T=$\frac{t}{2}$;
相邻波峰(或波谷)间的距离等于波长,由题意知波长为8d,故D正确.
故选:D
点评 “经过时间t,前13个质点第一次形成如图乙所示的波形”,并不说波只传到前13个质点.如果是只传到前13个质点,由于第13个质点此时振动方向向下,所以质点1开始运动时的速度方向也应该竖直向下,这与题给条件矛盾;熟记:任何质点的起振方向均与波源的起振方向相同.
练习册系列答案
相关题目
14.如图所示,质量分别为m1、m2的两个物块间用一轻弹簧连接,放在倾角为θ的粗糙斜面上,物块与斜面间的动摩擦因数均为μ.平行于斜面、大小为F的拉力作用在m1上,使m1、m2一起向上作匀加速运动,斜面始终静止在水平地面上,则( )
A. | 弹簧的弹力大小为$\frac{{m}_{2}}{{m}_{1}+{m}_{2}}$F | |
B. | 弹簧的弹力大小为$\frac{{m}_{2}}{{m}_{1}+{m}_{2}}$F+μm2gcosθ | |
C. | 地面对斜面的摩擦力一定水平向右 | |
D. | 地面对斜面的摩擦力可能为零 |
1.一质点做简谐运动的图象如图所示,则下列说法正确的是 ( )
A. | 质点振动的周期为0.4s | |
B. | 0至0.5s内质点通过的路程为10cm | |
C. | 在0.2s、0.4s时质点的振动速度相同 | |
D. | 0.2s至0.3s内质点的加速度在增大,速度在减小. |
19.对下列现象解释正确的是( )
A. | 图甲的原理和光导纤维传送光信号的原理一样 | |
B. | 图乙的原理和音叉周围声音的强弱变化原理一样 | |
C. | 图丙的原理和照相机镜头表面涂上增透膜的原理一样 | |
D. | 图丁的原理和用标准平面检查光学平面的平整程度的原理一样 | |
E. | 图戊的原理和门镜(透过门镜可以看到门外较宽阔的范围)的原理一样 |