题目内容
(2009?威海模拟)一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s2)( )
分析:当小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,对小猴受力分析,运用牛顿第二定律求解加速度.
解答:解:小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,即F=Mg;
小猴对细绳的拉力等于细绳对小猴的拉力F′=F;
对小猴受力分析,受重力和拉力,根据牛顿第二定律,有
F′-mg=ma
解得
a=
=5m/s2
故选B.
小猴对细绳的拉力等于细绳对小猴的拉力F′=F;
对小猴受力分析,受重力和拉力,根据牛顿第二定律,有
F′-mg=ma
解得
a=
(M-m)g |
m |
故选B.
点评:本题关键先后对重物和小猴受力分析,然后根据共点力平衡条件和牛顿第二定律列式求解.
练习册系列答案
相关题目