题目内容
(19分)如图,在区域I(0≤x≤d)和区域II(d≤x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3。不计重力和两粒子之间的相互作用力。求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250034456594367.jpg)
(1)粒子a射入区域I时速度的大小;
(2)当a离开区域II时,a、b两粒子的y坐标之差。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250034456594367.jpg)
(1)粒子a射入区域I时速度的大小;
(2)当a离开区域II时,a、b两粒子的y坐标之差。
(1)
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250034456901032.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445674816.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250034456901032.png)
试题分析:(1)设粒子a在I内做匀速圆周运动的圆心为C(在y轴上),半径为Ra1,粒子速率为va,运动轨迹与两磁场区域边界的交点为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445721307.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250034457375801.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445752887.png)
由几何关系得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445784601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445799745.png)
式中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445815494.png)
由(1)(2)(3)式得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445674816.png)
(2)设粒子在II区内做圆周运动的的圆心为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445862363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445877409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445893355.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445924722.png)
由洛仑兹力分式和牛顿第二定律得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250034459401048.png)
由(1)(5)式得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445955635.png)
C,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445971326.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445862363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445862363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446064598.png)
的平面上,由对称性知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445893355.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445971326.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446158844.png)
式中h是C点的Y坐标
设b在I中运动的轨道半径为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446174387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250034461891089.png)
设a到达
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003445893355.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446236364.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446252748.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446283740.png)
式中,t是a在区域II中运动的时间,而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446298769.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446314875.png)
由⑤⑨⑩(11)(12)(13)式得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446330487.png)
由①③⑨(14)式可见,b没有飞出I。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/20140825003446236364.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250034463761031.png)
由(1)(3)(8)(9)(14)(15)式及题给条件得,a、b两粒子的y坐标之差为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140825/201408250034456901032.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目