题目内容
(2008?镇江模拟)一个质量为m带电量为+q的小球以水平初速度v0自离地面h高度处做平抛运动.不计空气阻力.重力加速度为g.试回答下列问题:
(1)小球自抛出到第一次落地至点P的过程中水平方向的位移s大小是多少?
(2)若在空间加一个竖直方向的匀强电场,发现小球水平抛出后做匀速直线运动,则匀强电场强度E是多大?
(3)若在空间再加一个垂直纸面向外的匀强磁场,发现小球落地点仍然是P.试问磁感应强度B是多大?
(1)小球自抛出到第一次落地至点P的过程中水平方向的位移s大小是多少?
(2)若在空间加一个竖直方向的匀强电场,发现小球水平抛出后做匀速直线运动,则匀强电场强度E是多大?
(3)若在空间再加一个垂直纸面向外的匀强磁场,发现小球落地点仍然是P.试问磁感应强度B是多大?
分析:(1)粒子在重力场中做平抛运动,由平抛运动的规律可得出水平方向的位移;
(2)加电场后粒子做匀速直线运动,由受力平衡关系可求得电场强度的大小;
(3)由于电场力与重力平衡,故小球在磁场中做匀速圆周运动,由几何关系可求得半径,再由牛顿第二定律可求得磁感应强度B.
(2)加电场后粒子做匀速直线运动,由受力平衡关系可求得电场强度的大小;
(3)由于电场力与重力平衡,故小球在磁场中做匀速圆周运动,由几何关系可求得半径,再由牛顿第二定律可求得磁感应强度B.
解答:解:(1)水平方向:s=v0t
竖直方向h=
gt2
联立解得:s=v0
;
(2)由平衡关系可知:mg=Eq
解得电场强度E=
;
(3)由几何关系可知:
R2=x2+(R-h)2
得:R=
(
+h2)
由牛顿第二定律可知:Bqv0=m
解得磁感应强度:B=
=
.
竖直方向h=
1 |
2 |
联立解得:s=v0
|
(2)由平衡关系可知:mg=Eq
解得电场强度E=
mg |
q |
(3)由几何关系可知:
R2=x2+(R-h)2
得:R=
1 |
2h |
2h
| ||
g |
由牛顿第二定律可知:Bqv0=m
| ||
R |
解得磁感应强度:B=
mv0 |
qR |
2mgv0 | ||
q(2
|
点评:本题考查带电粒子在复合场中的运动,当重力与电场力相互抵消时,带电粒在磁场作用下将做匀速圆周运动.
练习册系列答案
相关题目