ÌâÄ¿ÄÚÈÝ
£¨2010?ÑγÇһģ£©ÈçͼËùʾ£¬ºÜ³¤µÄ¹â»¬´Å°ôÊúÖ±¹Ì¶¨ÔÚˮƽÃæÉÏ£¬ÔÚËüµÄ²àÃæÓоùÔÈÏòÍâµÄ·øÉä×´µÄ´Å³¡£®´Å°ôÍâÌ×ÓÐÒ»¸öÖÊÁ¿¾ùÔȵÄÔ²ÐÎÏßȦ£¬ÖÊÁ¿Îªm£¬°ë¾¶ÎªR£¬µç×èΪr£¬ÏßȦËùÔڴų¡´¦µÄ´Å¸ÐӦǿ¶ÈΪB£®ÈÃÏßȦ´Ó´Å°ôÉ϶ËÓɾ²Ö¹ÊÍ·ÅÑØ´Å°ôÏÂÂ䣬¾Ò»¶Îʱ¼äÓëˮƽÃæÏàÅö²¢·´µ¯£¬ÏßȦ·´µ¯ËٶȼõСµ½ÁãºóÓÖÑØ´Å°ôÏÂÂ䣬ÕâÑùÏßȦ»á²»¶ÏµØÓëˮƽÃæÏàÅöÏÂÈ¥£¬Ö±µ½Í£ÁôÔÚˮƽÃæÉÏ£®ÒÑÖªµÚÒ»´ÎÅöºó·´µ¯ÉÏÉýµÄʱ¼äΪt1£¬ÏÂÂäµÄʱ¼äΪt2£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬²»¼ÆÅöײ¹ý³ÌÖÐÄÜÁ¿ËðʧºÍÏßȦÖеçÁ÷´Å³¡µÄÓ°Ï죮Çó£º
£¨1£©ÏßȦµÚÒ»´ÎÏÂÂä¹ý³ÌÖеÄ×î´óËٶȦÔm
£¨2£©µÚÒ»´ÎÓëˮƽÃæÅöºóÉÏÉýµ½×î¸ßµãµÄ¹ý³ÌÖÐͨ¹ýÏßȦijһ½ØÃæµÄµçÁ¿q
£¨3£©ÏßȦ´ÓµÚÒ»´Îµ½µÚ¶þ´ÎÓëˮƽÃæÏàÅöµÄ¹ý³ÌÖвúÉúµÄ½¹¶úÈÈQ£®
£¨1£©ÏßȦµÚÒ»´ÎÏÂÂä¹ý³ÌÖеÄ×î´óËٶȦÔm
£¨2£©µÚÒ»´ÎÓëˮƽÃæÅöºóÉÏÉýµ½×î¸ßµãµÄ¹ý³ÌÖÐͨ¹ýÏßȦijһ½ØÃæµÄµçÁ¿q
£¨3£©ÏßȦ´ÓµÚÒ»´Îµ½µÚ¶þ´ÎÓëˮƽÃæÏàÅöµÄ¹ý³ÌÖвúÉúµÄ½¹¶úÈÈQ£®
·ÖÎö£º£¨1£©ÏßȦÏÂÂä¹ý³ÌÖд¹Ö±Çиî´Å¸ÐÏߣ¬²úÉú¸ÐÓ¦µç¶¯ÊÆ£¬ÓÉE=BLv¡¢I=
¡¢FA=BILµÃµ½°²ÅàÁ¦µÄ±í´ïʽ£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ·ÖÎöÏßȦ¼ÓËٶȵı仯£¬ÅжÏÏßȦµÄÔ˶¯Çé¿ö£º°²ÅàÁ¦Öð½¥Ôö´ó£¬¼ÓËÙ¶ÈÖð½¥¼õС£¬µ±°²ÅàÁ¦ÓëÖØÁ¦Æ½ºâʱ£¬ÏßȦ×öÔÈËÙÖ±ÏßÔ˶¯£¬Ëٶȴﵽ×î´ó£¬ÓÉƽºâÌõ¼þ¿ÉÇó³ö×î´óËٶȣ®
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵõ½·´µ¯ÉÏÉý¹ý³ÌÖÐÏßȦ¼ÓËٶȵıí´ïʽ£¬²ÉÓûý·Ö·¨Çó³öµçÁ¿q£®
£¨3£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺͰ²ÅàÁ¦±í´ïʽµÃµ½¼ÓËÙ¶ÈÓë˲ʱËٶȵĹØϵʽ£¬Çó³öÒ»¶Î΢Сʱ¼ä¡÷tÄÚ£¬ÏßȦÉÏÉý¸ß¶È¡÷h£¬ÓÉ»ý·Ö·¨Çó³öÏßȦÉÏÉýµÄ×î´ó¸ß¶È£®ÔÙ²ÉÓûý·Ö·¨Çó³öÏßȦµÚ¶þ´ÎϽµµ½Ë®Æ½ÃæʱµÄËٶȣ¬ÓÉÄÜÁ¿Êغ㶨ÂÉ¿ÉÇó³ö½¹¶úÈÈQ£®
E |
r |
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵõ½·´µ¯ÉÏÉý¹ý³ÌÖÐÏßȦ¼ÓËٶȵıí´ïʽ£¬²ÉÓûý·Ö·¨Çó³öµçÁ¿q£®
£¨3£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺͰ²ÅàÁ¦±í´ïʽµÃµ½¼ÓËÙ¶ÈÓë˲ʱËٶȵĹØϵʽ£¬Çó³öÒ»¶Î΢Сʱ¼ä¡÷tÄÚ£¬ÏßȦÉÏÉý¸ß¶È¡÷h£¬ÓÉ»ý·Ö·¨Çó³öÏßȦÉÏÉýµÄ×î´ó¸ß¶È£®ÔÙ²ÉÓûý·Ö·¨Çó³öÏßȦµÚ¶þ´ÎϽµµ½Ë®Æ½ÃæʱµÄËٶȣ¬ÓÉÄÜÁ¿Êغ㶨ÂÉ¿ÉÇó³ö½¹¶úÈÈQ£®
½â´ð£º½â£º£¨1£©ÏßȦµÚÒ»´ÎÏÂÂä¹ý³ÌÖÐÓÐE=B?2¦ÐRv¡¢I=
¡¢FA=BIL=BI?2¦ÐR£¬µÃ°²ÅàÁ¦´óСΪ FA=
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵà mg-FA=ma
¿ÉÖªÏßȦ×ö¼ÓËٶȼõСµÄ¼ÓËÙÔ˶¯£¬µ±a=0ʱ£¬ËÙ¶È×î´ó£¬´úÈëÇóµÃ×î´óËÙ¶ÈΪ£º¦Ôm=
£¨2£©·´µ¯ºóÉÏÉýµÄ¹ý³ÌÖÐijһʱ¿Ì£¬ÓÉÅ£¶ÙÔ˶¯¶¨Âɵãºmg+BI?2¦ÐR=ma
ÔòµÃ£ºmg¡÷t+BI?2¦ÐR?¡÷t=ma¡÷t
ÔÚÒ»¶Î΢Сʱ¼ä¡÷tÄÚ£¬ËÙ¶ÈÔöÁ¿Îª¡÷¦Ô=a¡÷t£¬Í¨¹ýÏßȦ½ØÃæµçÁ¿Îª£º¡÷q=I¡÷t
Ôò£º¡÷q=
µÃµ½£º¡Æ¡÷q=
£¬ÓÖ
ma¡÷t=
m¡÷v=mvm=
£¬
mg¡÷t=mgt1£¬
¹Ê£ºq=
-
£¨3£©·´µ¯ºóÉÏÉýµÄ¹ý³ÌÖÐijһʱ¿Ì£¬ÓÉÅ£¶ÙÔ˶¯¶¨Âɵãºmg+B
¡Á2¦ÐR=ma
ÔÚÒ»¶Î΢Сʱ¼ä¡÷tÄÚ£¬ËÙ¶ÈÔöÁ¿Îª£º¡÷¦Ô=a¡÷t£¬ÏßȦÉÏÉý¸ß¶ÈΪ£º¡÷h=¦Ô¡÷t
ÔòÏßȦ¿ÉÉÏÉýµÄ×î´ó¸ß¶ÈhΪ£ºh=¡Æ¡÷h=
r=
-
ÏßȦµ½´ï×î¸ßµãºó£¬ÏÂÂä¹ý³ÌÖеÄijһʱ¿Ì£¬ÓÉÅ£¶ÙÔ˶¯¶¨Âɵãºmg-B
¡Á2¦ÐR=ma
ÔÚÒ»¶Î΢Сʱ¼ä¡÷tÄÚ£¬ËÙ¶ÈÔöÁ¿Îª£º¡÷¦Ô=a¡÷t£¬ÏßȦϽµ¸ß¶ÈΪ£º¡÷h=¦Ô¡÷t
ÔòÏßȦµÚ¶þ´ÎϽµµ½Ë®Æ½ÃæʱµÄËÙ¶ÈΪ£º¦Ô=¡Æ¡÷¦Ô=
¡Æ(mg-
)¡÷t=g(t1+t2)-
±¾¹ý³ÌÖÐÏßȦÖвúÉúµÄÈÈÁ¿ÎªÏßȦ¶¯ÄܵÄËðʧ£ºQ=
m¦Ôm2-
m¦Ô2=
m(
)2-
m(g(t1+t2)-
)2
»¯¼òµÃ£ºQ=
(t1+t2)-
mg2(t1+t2)2
´ð£º£¨1£©ÏßȦµÚÒ»´ÎÏÂÂä¹ý³ÌÖеÄ×î´óËٶȦÔmΪ
£®
£¨2£©µÚÒ»´ÎÓëˮƽÃæÅöºóÉÏÉýµ½×î¸ßµãµÄ¹ý³ÌÖÐͨ¹ýÏßȦijһ½ØÃæµÄµçÁ¿qΪ
-
£®
£¨3£©ÏßȦ´ÓµÚÒ»´Îµ½µÚ¶þ´ÎÓëˮƽÃæÏàÅöµÄ¹ý³ÌÖвúÉúµÄ½¹¶úÈÈQΪ
(t1+t2)-
mg2(t1+t2)2£®
E |
r |
4¦Ð2B2R2v |
r |
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵà mg-FA=ma
¿ÉÖªÏßȦ×ö¼ÓËٶȼõСµÄ¼ÓËÙÔ˶¯£¬µ±a=0ʱ£¬ËÙ¶È×î´ó£¬´úÈëÇóµÃ×î´óËÙ¶ÈΪ£º¦Ôm=
mgr |
4¦Ð2B2R2 |
£¨2£©·´µ¯ºóÉÏÉýµÄ¹ý³ÌÖÐijһʱ¿Ì£¬ÓÉÅ£¶ÙÔ˶¯¶¨Âɵãºmg+BI?2¦ÐR=ma
ÔòµÃ£ºmg¡÷t+BI?2¦ÐR?¡÷t=ma¡÷t
ÔÚÒ»¶Î΢Сʱ¼ä¡÷tÄÚ£¬ËÙ¶ÈÔöÁ¿Îª¡÷¦Ô=a¡÷t£¬Í¨¹ýÏßȦ½ØÃæµçÁ¿Îª£º¡÷q=I¡÷t
Ôò£º¡÷q=
ma¡÷t-mg¡÷t |
2¦ÐRB |
µÃµ½£º¡Æ¡÷q=
¡Æ(ma-mg)¡÷t |
2¦ÐRB |
m2gr |
4¦Ð2B2R2 |
¹Ê£ºq=
m2gr |
8¦Ð3B3R3 |
mgt1 |
2¦ÐBR |
£¨3£©·´µ¯ºóÉÏÉýµÄ¹ý³ÌÖÐijһʱ¿Ì£¬ÓÉÅ£¶ÙÔ˶¯¶¨Âɵãºmg+B
2¦ÐRB¦Ô |
r |
ÔÚÒ»¶Î΢Сʱ¼ä¡÷tÄÚ£¬ËÙ¶ÈÔöÁ¿Îª£º¡÷¦Ô=a¡÷t£¬ÏßȦÉÏÉý¸ß¶ÈΪ£º¡÷h=¦Ô¡÷t
ÔòÏßȦ¿ÉÉÏÉýµÄ×î´ó¸ß¶ÈhΪ£ºh=¡Æ¡÷h=
¡Æ(ma-mg)¡÷t |
4¦Ð2R2B2 |
m2gr2 |
16¦Ð4B4R4 |
mgrt1 |
4¦Ð2R2B2 |
ÏßȦµ½´ï×î¸ßµãºó£¬ÏÂÂä¹ý³ÌÖеÄijһʱ¿Ì£¬ÓÉÅ£¶ÙÔ˶¯¶¨Âɵãºmg-B
2¦ÐRB¦Ô |
r |
ÔÚÒ»¶Î΢Сʱ¼ä¡÷tÄÚ£¬ËÙ¶ÈÔöÁ¿Îª£º¡÷¦Ô=a¡÷t£¬ÏßȦϽµ¸ß¶ÈΪ£º¡÷h=¦Ô¡÷t
ÔòÏßȦµÚ¶þ´ÎϽµµ½Ë®Æ½ÃæʱµÄËÙ¶ÈΪ£º¦Ô=¡Æ¡÷¦Ô=
1 |
m |
4¦Ð2B2R2 |
r |
mgr |
4¦Ð2B2R2 |
±¾¹ý³ÌÖÐÏßȦÖвúÉúµÄÈÈÁ¿ÎªÏßȦ¶¯ÄܵÄËðʧ£ºQ=
1 |
2 |
1 |
2 |
1 |
2 |
mgr |
4¦Ð2B2R2 |
1 |
2 |
mgr |
4¦Ð2B2R2 |
»¯¼òµÃ£ºQ=
m2g2r |
4¦Ð2B2R2 |
1 |
2 |
´ð£º£¨1£©ÏßȦµÚÒ»´ÎÏÂÂä¹ý³ÌÖеÄ×î´óËٶȦÔmΪ
mgr |
4¦Ð2B2R2 |
£¨2£©µÚÒ»´ÎÓëˮƽÃæÅöºóÉÏÉýµ½×î¸ßµãµÄ¹ý³ÌÖÐͨ¹ýÏßȦijһ½ØÃæµÄµçÁ¿qΪ
m2gr |
8¦Ð2B3R3 |
mgt |
2¦ÐBR |
£¨3£©ÏßȦ´ÓµÚÒ»´Îµ½µÚ¶þ´ÎÓëˮƽÃæÏàÅöµÄ¹ý³ÌÖвúÉúµÄ½¹¶úÈÈQΪ
m2g2r |
4¦Ð2B2R2 |
1 |
2 |
µãÆÀ£º±¾ÌâÊǵç´Å¸ÐÓ¦ÎÊÌ⣬ÄѵãÊDzÉÓûý·Ö·¨Çó½â·ÇÔȱäËÙÔ˶¯µÄËٶȺ͸߶ȣ¬´ÓÅ£¶ÙµÚ¶þ¶¨ÂÉÈëÊÖ£¬²Éȡ΢Ԫ·¨£¬µÃµ½Ò»¶Î΢Сʱ¼ä¡÷tÄÚËٶȵı仯Á¿ºÍ¸ß¶È±ä»¯Á¿£¬ÔÙ»ý·Ö£®ÄѶȽϴ󣬿¼²éÔËÓÃÊýѧ֪ʶ´¦ÀíÎïÀíÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿