ÌâÄ¿ÄÚÈÝ
3£®ÈçͼËùʾ£¬Á½¸ö»¥Ïà¾øÔµÇÒ½ô¿¿ÔÚÒ»ÆðµÄA¡¢BÁ½ÎïÌ壬¾²Ö¹ÔÚˮƽµØÃæÉÏ£®AµÄÖÊÁ¿Îªm=0.04kg£¬´øµçÁ¿Îªq=+5.0¡Á10-5C£¬BµÄÖÊÁ¿ÎªM=0.06kg£¬²»´øµç£®Á½ÎïÌåÓëˮƽÃæ¼äµÄ¶¯Ä¦²ÁÒòÊý¾ùΪ¦Ì=0.4£¬t=0ʱ¿Ì£¬¿Õ¼ä´æÔÚˮƽÏòÓÒµÄÔÈÇ¿µç³¡£¬µç³¡Ç¿¶ÈΪE=1.6¡Á104N/C£®ÉèÔ˶¯¹ý³ÌÖÐСÎï¿éËù´øµÄµçÁ¿Ã»Óб仯£®Ç󣺣¨1£©A¡¢BµÄ¼ÓËٶȼ°ÆäÏ໥×÷ÓÃÁ¦µÄ´óС£»
£¨2£©Èôt=2sºóµç³¡·´Ïò£¬ÇÒ³¡Ç¿¼õΪÔÀ´µÄÒ»°ë£¬ÇóÎïÌåBÍ£ÏÂʱÁ½ÎïÌå¼äµÄ¾àÀ룮
·ÖÎö £¨1£©Ôڵ糡Á¦×÷ÓÃÏÂAÓëBÒ»ÆðÏòÓÒÔȼÓËÙÔ˶¯£¬¼ÓËÙ¶ÈÏàͬ£®¶ÔÕûÌå·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÕûÌåµÄ¼ÓËٶȣ¬¸ôÀë·ÖÎö£¬Çó³öA¡¢B¼äÏ໥µÄ×÷ÓÃÁ¦£®
£¨2£©ÔÚÇ°2sÄÚAB×öÔȼÓËÙÔ˶¯£¬ÓÉv=atÇó³ö2sÄ©µÄËٶȣ®t=2sºóµç³¡·´Ïò£¬ÇÒ³¡Ç¿¼õΪÔÀ´µÄÒ»°ë£¬´ËʱAºÍB¶¼¿ªÊ¼×öÔȼõËÙÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öAºÍBµÄ¼ÓËٶȴóС£¬½áºÏλÒƹ«Ê½Çó³öBÍ£ÏÂʱÁ½ÎïÌå¼äµÄ¾àÀ룮
½â´ð ½â£º£¨1£©¶ÔÕûÌå·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº
a=$\frac{qE-¦Ì£¨M+m£©g}{M+m}$=$\frac{5¡Á1{0}^{-5}¡Á1.6¡Á1{0}^{4}-0.4¡Á£¨0.04+006£©¡Á10}{0.04+0.06}$=4m/s2
¸ôÀë¶ÔB·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬FN-¦ÌMg=Ma
½âµÃ FN=¦ÌMg+Ma=0.4¡Á0.6+0.06¡Á4N=0.48N
£¨2£©t=2sʱ£¬A¡¢BµÄËÙ¶Èv=at=2¡Á4m/s=8m/s
t=2sºóµç³¡·´Ïò£¬ÇÒ³¡Ç¿¼õΪÔÀ´µÄÒ»°ë£¬
´ËʱA×öÔȼõËÙÔ˶¯µÄ¼ÓËٶȴóС aA=$\frac{qE¡ä+¦Ìmg}{m}$=$\frac{5¡Á1{0}^{-5}¡Á0.8¡Á1{0}^{4}+0.4¡Á0.04¡Á10}{0.04}$=14m/s2£®
B×öÔȼõËÙÔ˶¯µÄ¼ÓËÙ¶È ${a_B}=ug=4m/{s^2}$
BËٶȼõΪÁãµÄʱ¼ä tB=$\frac{v}{{a}_{B}}$=$\frac{8}{4}$=2s
¼õËÙµ½ÁãµÄλÒÆ x=$\frac{{v}^{2}}{2{a}_{B}}$=$\frac{{8}^{2}}{2¡Á4}$=8m
AËٶȼõΪÁãµÄʱ¼ä ${t_{A1}}=\frac{v}{a_A}=\frac{8}{14}s$=$\frac{4}{7}$s£¬¼õËÙµ½ÁãµÄλÒÆ ${x_{A1}}=\frac{v^2}{{2{a_A}}}=\frac{64}{28}m$=$\frac{16}{7}$m
ÔòA·´Ïò×öÔȼÓËÙÔ˶¯µÄ¼ÓËٶȴóС
aA¡ä=$\frac{qE¡ä-¦Ìmg}{m}$=$\frac{5¡Á1{0}^{-5}¡Á0.8¡Á1{0}^{4}-0.4¡Á0.04¡Á10}{0.04}$=6m/s2
Ôò·´Ïò×öÔȼÓËÙÖ±ÏßÔ˶¯µÄλÒÆ xA2=$\frac{1}{2}{a}_{A}¡ä£¨{t}_{B}-{t}_{A1}£©^{2}$=$\frac{1}{2}¡Á6¡Á£¨2-\frac{4}{7}£©^{2}$=$\frac{300}{49}m$
ÔòA¡¢BÏà¾àµÄ¾àÀë $¡÷x={x_{A2}}+{x_B}-{x_{A1}}=\frac{300}{49}+8-\frac{64}{28}=11.8m$
´ð£º
£¨1£©A¡¢BµÄ¼ÓËÙ¶ÈÊÇ4m/s2£¬Ï໥×÷ÓÃÁ¦µÄ´óСÊÇ0.48N£»
£¨2£©Èôt=2sºóµç³¡·´Ïò£¬ÇÒ³¡Ç¿¼õΪÔÀ´µÄÒ»°ë£¬ÎïÌåBÍ£ÏÂʱÁ½ÎïÌå¼äµÄ¾àÀëÊÇ11.8m£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÀíÇåA¡¢BµÄÔ˶¯¹æÂÉ£¬ÌرðÊÇAµÄÔ˶¯Çé¿ö£¬Í¨¹ý·ÖÎöÊÜÁ¦Çé¿ö£¬·ÖÎöAµÄÔ˶¯Çé¿ö£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½øÐÐÇó½â£®
A£® | Éþ×ÓµÄÀÁ¦¶ÔÇò²»×ö¹¦ | B£® | Éþ×ÓµÄÀÁ¦¶ÔÇò×ö¹¦¦ÐRF | ||
C£® | ÖØÁ¦ºÍÖ§³ÖÁ¦²»×ö¹¦ | D£® | Ħ²ÁÁ¦¶ÔÎïÌå×ö¹¦-¦ÌmgR¦Ð |
A£® | ÔÚ²âÁ¿µç×èʱ£¬¸ü»»±¶Âʺó±ØÐëÖØнøÐе÷Áã | |
B£® | ÔÚ²âÁ¿µçÁ÷ʱ£¬¸ü»»Á¿³Ìºó±ØÐëÖØнøÐе÷Áã | |
C£® | ÔÚ²âÁ¿Î´Öªµç×èʱ£¬±ØÐëÏÈÑ¡Ôñ±¶ÂÊ×î´óµ²½øÐÐÊÔ²â | |
D£® | ÔÚ²âÁ¿Î´ÖªµçÁ÷ʱ£¬±ØÐëÏÈÑ¡ÔñµçÁ÷×î´óÁ¿³Ì½øÐÐÊÔ²â |
A£® | ´Ëʱ¹è¹âµç³ØµÄÄÚ×èΪ12.5¦¸ | B£® | ´Ëʱ¹è¹âµç³ØµÄÊä³ö¹¦ÂÊΪ 0.2W | ||
C£® | ´Ëʱ¹è¹âµç³ØµÄ×ܹ¦ÂÊΪ 0.72W | D£® | ´Ëʱ¹è¹âµç³ØµÄÊä³öЧÂÊΪ 40% |
A£® | BC¼äÉþµÄÀÁ¦´óСΪ$\frac{2}{3}$F | B£® | BC¼äÉþµÄÀÁ¦´óСΪ$\frac{1}{3}$F | ||
C£® | ABÁ½Çò¼ä¾àΪ$\sqrt{\frac{3K{Q}^{2}}{2F}}$ | D£® | ABÁ½Çò¼ä¾àΪ$\sqrt{\frac{3K{Q}^{2}}{F}}$ |
A£® | ÆÕÀʿ˸ù¾ÝºÚÌå·øÉäµÄ¹æÂÉ£¬Ìá³öÁËÄÜÁ¿×ӵĹ۵ã | |
B£® | ±´¿ËÀÕ¶ûͨ¹ýÑо¿ÓË¿óʯ£¬·¢ÏÖÁËÌìÈ»·ÅÉäÏÖÏó | |
C£® | ²£¶û¸ù¾Ý¦ÁÁ£×ÓÉ¢ÉäʵÑ飬Ìá³öÁËÔ×ӵĺËʽ½á¹¹Ä£ÐÍ | |
D£® | ÌÀķѷͨ¹ýÑо¿Òõ¼«ÉäÏß·¢ÏÖÁ˵ç×Ó£¬²¢¾«È·²âÁ¿³öµç×ӵĵçºÉÁ¿ |
A£® | ÎÞÈË»úÔÈËÙÔ˶¯µÄËٶȴóС | B£® | ÎÞÈË»úÔÚ¿ÕÖоàÀëˮƽµØÃæµÄ¸ß¶È | ||
C£® | СÇòÔÚ¿ÕÖÐÔ˶¯µÄʱ¼ä | D£® | µ±µØµÄÖØÁ¦¼ÓËÙ¶È |